\(\frac{1}{n}-\frac{1}{n+1}\left(n\inℕ^∗\right)\)

b)Tính 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

c)1*(1/2-1/3+1/3-1/4+.....+1/91-1/94)

1/2-1/94 ban tu tinh nhe

d)1*(1/1-1/4+1/4-1/7+......+1/91-1/94)

1-1/94 ban tu tinh nhe 

tk nha

21 tháng 3 2018

a) \(\frac{1}{n}-\frac{1}{n+1}\left(n\inℕ^∗\right)\)

\(\Leftrightarrow\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\Leftrightarrow\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

b) \(\frac{1}{n}-\frac{1}{n+3}\left(n\inℕ^∗\right)\)

\(\Leftrightarrow\frac{n+3}{n\left(n+3\right)}-\frac{n}{n\left(n+3\right)}=\frac{n+3-n}{n\left(n+3\right)}=\frac{3}{n\left(n+3\right)}\)

c,d dễ bn tách ra rồi trừ đi

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

10 tháng 4 2018

a)A=n/n+1=n/n+0/1

   B=n+2/n+3=n/n  +  2/3

ta có:0<2/3

=>A<B

1/ Tính tổnga)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)b)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)c)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)2/  Chứng tỏ rằng \(\frac{2n+1}{3n+2}\) và\(\frac{2n+3}{4n+8}\)là các phân số tối giản3/ Cho \(A=\frac{n+2}{n-5}\)\(\left(n\in Z;n\ne5\right)\)Tìm n để \(A\in Z\)4/ Chứng mình...
Đọc tiếp

1/ Tính tổng

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

b)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

c)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008+2010}\)

2/  Chứng tỏ rằng \(\frac{2n+1}{3n+2}\) và\(\frac{2n+3}{4n+8}\)là các phân số tối giản

3/ Cho \(A=\frac{n+2}{n-5}\)\(\left(n\in Z;n\ne5\right)\)Tìm n để \(A\in Z\)

4/ Chứng mình rằng:

 a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)\(\left(n,a\inℕ^∗\right)\)

 b) Áp dụng câu a tính:

     \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)         \(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

     \(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)

5/ Với giá trị nào của \(x\in Z\)các phân số sau có giá trị là một số nguyên

  a)\(A=\frac{3}{x-1}\)      b)\(B=\frac{x-2}{x+3}\)      c)\(C=\frac{2x+1}{x-3}\)       d)\(D=\frac{x^2-1}{x+1}\)

9
11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

5 tháng 5 2016

b) A=1/2.3+1/3.4+....+1/99.100

=> A=1/2-1/3+1/3-1/4+....+1/99-1/100

=> A=1/2-1/100

=> A=50/100-1/100

=> A=49/100

5 tháng 5 2016

49/100 

k nhe

26 tháng 5 2017

b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)

\(B=1-\frac{1}{2015}\)

\(B=\frac{2014}{2015}\)

26 tháng 5 2017

a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

còn lại tự giải nha gần giống như phần b thôi cũng thú vị.

ủng hộ nha

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu

5 tháng 5 2017

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{49}{100}\)

5 tháng 5 2017

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{1}-\frac{1}{103}\right)\)

\(B=\frac{510}{103}\)

9 tháng 4 2015

a)\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{91}-\frac{1}{94}+\frac{1}{94}-\frac{1}{97}\)(giản ước các phân số giống nhau)

=\(\frac{1}{1}-\frac{1}{97}\)

=\(\frac{96}{97}\)

9 tháng 4 2015

a)    gọi \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.11}+...+\frac{2}{94.97}\)

               \(\Rightarrow\frac{3}{2}A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{94.97}\)

                     \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\)(rút gọn các phân số giống nhau)

                      \(\frac{3}{2}A=\frac{1}{1}-\frac{1}{97}\)

                       \(\frac{3}{2}A=\frac{96}{97}\left(1\right)\)

                       từ \(\left(1\right)\Leftrightarrow A=\frac{96}{97}\div\frac{3}{2}=\frac{64}{97}\)

b)\(\left(1-\frac{1}{7}\right).\left(1-\frac{1}{8}\right).\left(1-\frac{1}{9}\right).....\left(1-\frac{1}{2011}\right)\)

    \(=\frac{6}{7}.\frac{7}{8}.\frac{8}{9}......\frac{2010}{2011}\)

 \(=\frac{6.7.8.9.....2010}{7.8.9......2011}\)(rút gọn các số giống nhau)

\(=\frac{6}{2011}\)