Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cotα = \(\frac{1}{3}\) \(\Leftrightarrow\frac{cos\alpha}{\sin\alpha}=\frac{1}{3}\Leftrightarrow\sin\alpha=3\cos\alpha\)
cotα =\(\frac{1}{\tan\alpha}=\frac{1}{3}\Rightarrow\tan\alpha=3\)
T = \(\frac{2016}{\sin^2\alpha-\sin\alpha\cos\alpha-\cos^2\alpha}=\frac{2016}{9\cos^2\alpha-3\cos^2\alpha-\cos^2\alpha}\) \(=\frac{2016}{5\cos^2\alpha}=\frac{2016}{5}\times\frac{1}{\cos^2\alpha}=\frac{2016}{5}\times\left(1+\tan^2\alpha\right)\) \(=\frac{2016}{5}\left(1+9\right)=4032\)
a, \(sin\alpha=\frac{1}{5},\frac{\pi}{2}< \alpha< \pi\)
+) \(sin^2\alpha+cos^2\alpha=1\)
\(\Leftrightarrow\left(\frac{1}{5}\right)^2+cos^2\alpha=1\Leftrightarrow cos^2\alpha=\frac{24}{25}\Leftrightarrow cos\alpha=\pm\frac{2\sqrt{6}}{5}\)
mà \(\frac{\pi}{2}< \alpha< \pi\Rightarrow cos\alpha=-\frac{2\sqrt{6}}{5}\)
+) \(tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{\frac{1}{5}}{-\frac{2\sqrt{6}}{5}}=-\frac{\sqrt{6}}{12}\)
+) \(cot\alpha=\frac{cos\alpha}{sin\alpha}=\frac{-\frac{2\sqrt{6}}{5}}{\frac{1}{5}}=-2\sqrt{6}\)
a/ \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{2\sqrt{6}}{5}\)
\(tanx=\frac{sinx}{cosx}=-\frac{\sqrt{6}}{12}\) ; \(cotx=\frac{1}{tanx}=-2\sqrt{6}\)
b/ \(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\)
\(\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{5\sqrt{26}}{26}\)
\(sina=tana.cosa=-\frac{\sqrt{26}}{26}\)
c/ \(0< a< \frac{\pi}{2}\Rightarrow sina;cosa>0\)
\(\left\{{}\begin{matrix}cos^2a+sin^2a=1\\2sina.cosa=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow sina+cosa=\frac{\sqrt{15}}{3}\Rightarrow cosa=\frac{\sqrt{15}}{3}-sina\)
\(\Rightarrow sina\left(\frac{\sqrt{15}}{3}-sina\right)=\frac{1}{3}\Rightarrow sin^2a-\frac{\sqrt{15}}{3}sina+\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}sina=\frac{\sqrt{15}+\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}-\sqrt{3}}{6}\\sina=\frac{\sqrt{15}-\sqrt{3}}{6}\Rightarrow cosa=\frac{\sqrt{15}+\sqrt{3}}{6}\end{matrix}\right.\) \(\Rightarrow tana=\frac{sina}{cosa}=...\)
d/ \(\frac{\pi}{2}< a< \pi\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa< 0\end{matrix}\right.\)
\(cosa=\sqrt{2}-sina\) \(\Rightarrow sin^2a+\left(\sqrt{2}-sina\right)^2=1\)
\(\Leftrightarrow2sin^2a-2\sqrt{2}sina+1=0\Rightarrow sina=\frac{\sqrt{2}}{2}\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{2}}{2}\)
\(tana=\frac{sina}{cosa}=-1\)
\(\left(sina-cosa\right)^2=2\Leftrightarrow sin^2a+cos^2a-2sina.cosa=2\)
\(\Leftrightarrow1-sin2a=2\Rightarrow sin2a=-1\)
\(\left(sina+cosa\right)^2=2\Leftrightarrow sin^2a+cos^2a+2sina.cosa=2\)
\(\Leftrightarrow1+sin2a=2\Rightarrow sin2a=1\)
\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{1}{2}\)
\(\Rightarrow cos\left(a+\frac{\pi}{3}\right)=cosa.cos\frac{\pi}{3}-sina.sin\frac{\pi}{3}\)
\(=\frac{1}{2}.\frac{1}{2}-\left(-\frac{\sqrt{3}}{2}\right).\left(\frac{\sqrt{3}}{2}\right)=...\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)
a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)
b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)
c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)
d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=2cos^2a-1=\frac{7}{25}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}=...\)
c sai đề
\(sin\left(a+\frac{\pi}{4}\right)=sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}=...\)
\(M=\frac{\left(-\frac{3}{5}\right)^2-\left(\frac{7}{25}\right)^2}{-\frac{3}{4}}=...\)
\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}cosa>0\\tana>0\end{matrix}\right.\)
\(cosa=\sqrt{1-sin^2a}=\frac{\sqrt{5}}{3}\)
\(tana=\frac{sina}{cosa}=\frac{2\sqrt{5}}{5}\)
Thay vào biểu thức B và bấm máy