Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có :
\(\sqrt{0,16}\) + \(\sqrt{\frac{4}{25}}\) = \(\sqrt{\left(0,4^2\right)}\) + \(\sqrt{\left(\frac{2}{5}\right)^2}\) = 0,4 + \(\frac{2}{5}\) = \(\frac{2}{5}+\frac{2}{5}\) = \(\frac{4}{5}\)
b)
Ta có :
\(\sqrt{3\frac{3}{16}}\) - \(\sqrt{0,36}\) = \(\sqrt{\left(\frac{7}{4}\right)^2}\) - \(\sqrt{\left(0,6^2\right)}\) = \(\frac{7}{4}-\frac{3}{5}=\frac{23}{20}\)
a) \(\sqrt{\frac{25}{81}\cdot\frac{16}{49}\cdot\frac{169}{9}}\\ =\sqrt{\left(\frac{5}{9}\right)^2\cdot\left(\frac{4}{7}\right)^2\cdot\left(\frac{13}{3}\right)^2}\\ =\sqrt{\left(\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\right)^2}\\ =\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{13}{3}\\ =\frac{260}{189}\)
b) \(\sqrt{3\frac{1}{6}\cdot2\frac{14}{25}\cdot2\frac{34}{81}}\\ =\sqrt{\frac{19}{6}\cdot\frac{64}{25}\cdot\frac{196}{81}}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\right)^2\cdot\left(\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\left(\frac{8}{5}\cdot\frac{14}{9}\right)^2}\\ =\sqrt{\frac{19}{6}\cdot\frac{112}{45}}\\ =\sqrt{\frac{1064}{135}}\)
Bổ sung câu b :
\(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}=\sqrt{\frac{49}{16}.\frac{64}{25}.\frac{196}{81}}=\sqrt{\frac{49}{16}}.\sqrt{\frac{64}{25}}.\sqrt{\frac{196}{81}}=\frac{7}{4}.\frac{8}{5}.\frac{14}{9}=\frac{196}{45}\)
a) \(\sqrt{1\frac{9}{16}\times2\frac{14}{25}}=\sqrt{\frac{25}{16}\times\frac{64}{25}}=\sqrt{4}=2\)
b) \(\sqrt{\frac{25^2-9^2}{68}}=\sqrt{\frac{\left(25-9\right)\left(25+9\right)}{68}}=\sqrt{\frac{16.34}{68}}=\sqrt{8}\)
\(ĐKXĐ:a\ge3\)
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow25.\sqrt{\frac{1}{25}.\left(a-3\right)}-7\sqrt{\frac{4}{9}.\left(a-3\right)}-7\sqrt{a^2-9}+18\sqrt{\frac{9}{81}.\left(a^2-9\right)}=0\)
\(\Leftrightarrow25.\sqrt{\frac{1}{25}}.\sqrt{a-3}-7.\sqrt{\frac{4}{9}}.\sqrt{a-3}-7\sqrt{a^2-9}+18.\sqrt{\frac{9}{81}}.\sqrt{a^2-9}=0\)
\(\Leftrightarrow25.\frac{1}{5}.\sqrt{a-3}-7.\frac{2}{3}.\sqrt{a-3}-7\sqrt{a^2-9}+18.\frac{1}{3}.\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}.\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}.\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}.\left(\frac{1}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\frac{1}{3}-\sqrt{a+3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a-3=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\\a+3=\frac{1}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\\a=\frac{-26}{9}\end{cases}}\)
mà \(a\ge3\)\(\Rightarrow a=\frac{-26}{9}\)không thỏa mãn
Vậy \(a=3\)
Bài làm:
đk: \(a\ge3\)
Ta có: \(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}+\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\sqrt{a^2-9}=\sqrt{a-3}\)
\(\Leftrightarrow\left|a^2-9\right|=\left|a-3\right|\)
\(\Leftrightarrow\orbr{\begin{cases}a^2-9=a-3\\a^2-9=3-a\end{cases}}\Leftrightarrow\orbr{\begin{cases}a^2-a-6=0\\a^2+a-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a-3\right)\left(a+2\right)=0\\\left(a-3\right)\left(a+4\right)=0\end{cases}}\)
=> \(a\in\left\{-4;-2;3\right\}\)
Mà theo đk thì \(a\ge3\) => a = 3 (thỏa mãn)
Vậy a = 3
a,
\(\sqrt{0,0004}=0.02\)
\(\sqrt{\frac{16}{81}}=\frac{\sqrt{16}}{\sqrt{81}}=\frac{4}{9}\)
\(\sqrt{25}=5\)
\(\sqrt{0,16}=0,4\)
b,\(\sqrt{\frac{9}{16}}+\sqrt{\frac{25}{9}}\)
= \(\frac{\sqrt{9}}{\sqrt{16}}+\frac{\sqrt{25}}{\sqrt{9}}\)
= \(\frac{3}{4}+\frac{5}{3}\)
=\(\frac{29}{12}\)