Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. a) Tìm x, y nguyên biết 1x= 1/6+3y
b) Tìm x thuộc Z để biểu thức A= 2x-1/x+1 có giá trị nguyên
\(a,\dfrac{1}{x}=\dfrac{1}{6}+3y\Leftrightarrow6=x+18xy\Leftrightarrow x\left(18y+1\right)=6\)
Mà \(x,y\in Z\)
\(x\) | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
\(18y+1\) | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |
\(y\) | loại | loại | loại | loại | loại | loại | loại | loại |
Vậy ko có x,y nguyên tm
\(b,A=\dfrac{2\left(x+1\right)-3}{x+1}=2-\dfrac{3}{x+1}\in Z\\ \Leftrightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-4;-2;0;2\right\}\)
Answer:
a) ĐK: \(x;y\ne0\)
\(\frac{1}{x}=\frac{1}{6}+\frac{3}{y}\Rightarrow6y=xy+18x\)
\(\Leftrightarrow y\left(6-x\right)+18\left(6-x\right)-108=0\)
\(\Leftrightarrow\left(18+y\right)\left(6-x\right)=108=2^2.3^3\)
Mà do x và y nguyên nên \(\left(18+y\right);\left(6-x\right)\in\left\{108\right\}\)
Ta đặt \(\hept{\begin{cases}A=6-x\\B=18+y\end{cases}}\)
Bước còn lại là lập bảng nhé! Bạn tự lập ạ, còn nêu có nhu cầu để mình lập thì nhắn cho mình.
b) \(A=\frac{2x-1}{x+1}\left(x\inℤ\right)\)
\(=\frac{2x+2-3}{x+1}\)
\(=\frac{2x+2}{x+1}-\frac{3}{x+1}\)
\(=\frac{2\left(x+1\right)}{x+1}-\frac{3}{x+1}\)
\(=2-\frac{3}{x+1}\)
Mà để biểu thức A có giá trị nguyên thì:
\(3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{2;-4;0;-2\right\}\)
1. ta có
\(3^{x+2}+4.3^{x+1}+3^{x-1}\)=66
\(3^x.3+3^x.3.4+3^x:3\)=66
3x.3+3x.12+3x.1/3=66
3x.(3+12+1/3)=66
3x.64/3=66
3x=66:64/3
3x=2187
3x=37
=> x=7
2.\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{9}=\frac{y}{12}\) (cung nhân cả hai phân số với 1/3)
\(\frac{y}{6}=\frac{z}{8}=>\frac{y}{12}=\frac{z}{16}\) (cùng nhân cả hai phân số với 1/2)
từ đây suy ra
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)