\(3xy^2+2x+2y+1=x^2+6y^2+xy\)

b) chứng minh rằng

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

Em nghĩ đề câu b là: n là số nguyên dương lẻ ạ!

Nếu đúng như vậy thì cách của em như sau:(ko chắc nha)

b) Với n = 1 thì mệnh đề đúng!

Giả sử nó đúng đến n = 2k + 1(do n lẻ mà) tức là:

\(42^{2k+1}+2.19^{2k+1}+3.4^{2k+1}⋮23\) (giả thiết quy nạp)

Ta sẽ chứng minh nó đúng với n = 2k + 3.

Cần chứng minh \(42^{2k+1}.42^2+2.19^{2k+1}.19^2+3.4^{2k+1}.4^2⋮23\)(*)

\(\Leftrightarrow42^2\left(42^{2k+1}+2.19^{2k+1}+3.4^{2k+1}\right)+2.19^{2k+1}\left(19^2-42^2\right)+3.4^{2k+1}\left(4^2-42^2\right)⋮23\)

Theo giả thiết quy nạp, ta chỉ cần chứng minh:

\(2.19^{2k+1}\left(19^2-42^2\right)+3.4^{2k+1}\left(4^2-42^2\right)⋮23\) (1)

Mà: \(a^2-b^2=\left(a-b\right)\left(a+b\right)⋮a-b\) (Đk: a khác b)

Do đó \(\left\{{}\begin{matrix}2.19^{2k+1}\left(19^2-42^2\right)⋮-23.2.19^{2k+1}⋮23\\3.4^{2k+1}\left(4^2-42^2\right)⋮23\end{matrix}\right.\)

Từ đó suy ra (1) đúng -> (*) đúng.

Theo nguyên lí quy nạp, ta có đpcm.

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.Câu 1:a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)Câu 2:a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)b) Cho số tự nhiên \(n\ge2\).Biết rằng với...
Đọc tiếp

Đề thi tham khảo chuyên toán vào 10. Thời gian làm bài: 150 phút.

Câu 1:

a) Giải phương trình: \(\frac{x^2}{x-1}+\sqrt{x-1}+\frac{\sqrt{x-1}}{x^2}=\frac{x-1}{x^2}+\frac{1}{\sqrt{x-1}}+\frac{x^2}{\sqrt{x-1}}\)

b) Giải hệ phương trình: \(\hept{\begin{cases}\frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0\end{cases}}\)

Câu 2:

a) Tìm tất cả các số nguyên dương m,n sao cho \(2^n+n=m!\)

b) Cho số tự nhiên \(n\ge2\).Biết rằng với mỗi số tự nhiên \(k\le\sqrt{\frac{n}{3}}\)thì \(k^2+k+n\)là một số nguyên tố. Chứng minh rằng với mỗi số tự nhiên \(k\le n-2\)thì \(k^2+k+n\)là một số nguyên tố.

Câu 3: 

a) Cho \(x\le y\le z\)thỏa mã điểu kiện\(xy+yz+zx=k\)với k là một số nguyên dương lớn hơn 1.

Hỏi bất đẳng thức sau đây đúng hay không: \(xy^2z^3< k+1?\)

b) Cho a,b,c là các số thực dương thỏa mãn \(abc\le1\). Chứng minh rằng:

\(\sqrt{\frac{a^2+b^2}{ab\left(a+b\right)}}+\sqrt{\frac{b^2+c^2}{bc\left(b+c\right)}}+\sqrt{\frac{c^2+a^2}{ca\left(c+a\right)}}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)

Câu 4: Cho đường tròn (O) có đường kính BC, A là điểm nằm ngoài đường tròn (O) sao cho tam giác ABC có 3 góc nhọn. AB cắt đường tròn (O) tại F, AC đường tròn (O) tại E. Gọi H là trực tâm tam giác ABC, N là trung điểm AH, AH cắt BC tại D, NB cắt đường tròn (O) tại điểm thứ hai là M. Gọi K, L lần lượt là giao điểm AH với ME và MC.

a) Chứng minh: E, L, F thẳng hàng 

b) Vẽ đường tròn (OQX) cắt OE tại Y với X,I,Q là giao điểm của đường thẳng qua H song song với ME và OF, NF,MC. Trên tia QY lấy điểm T sao cho QT=MK. Kẻ HT cắt NS tại J. Chứng minh tứ giác NJIH nội tiếp.

Câu 5: Cho m và n là hai số nguyên dương nguyên tố cùng nhau. Chứng minh tồn tại hai số nguyên dương x,y không vượt quá \(\sqrt{m}\) sao cho \(n^2x^2-y^2\)chia hết cho m.

Hết!

 

2
20 tháng 4 2019

Đây là đề của trường nào vậy bạn?

21 tháng 4 2019

Đề khó vcl ...

22 tháng 5 2020

a, Giả sử \(x,y \vdots 3\)

=> \(x^2 ;y^2 \) : 3 dư 1

=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )

Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)

Chứng minh tương tự \(xy \vdots 4\)

\((3;4) =1 => xy \vdots 12\)

22 tháng 5 2020

còn câu b ạ?

8 tháng 12 2019

1/ b) Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3=6x+4\)

Ta có hệ: \(\left\{{}\begin{matrix}x^3=6a+4\\a^3=6x+4\end{matrix}\right.\)

Lấy pt trên trừ pt dưới vế với vế, suy ra:

\(\left(x-a\right)\left(x^2+ax+a^2+6\right)=0\)

\(\Leftrightarrow x=a\Leftrightarrow x^3-6x-4=0\Leftrightarrow\left(x+2\right)\left(x^2-2x-2\right)=0\)

3 tháng 9 2018

hình như thiếu cái gì đó

Đề bài đủ rồi bạn nhé.

15 tháng 4 2020

1b

15 tháng 4 2020

2