Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(GT\Leftrightarrow2-3x^2=2\left(y+z\right)^2-2yz\ge2\left(y+z\right)^2-\dfrac{1}{4}.2\left(y+z\right)^2=\dfrac{3\left(y+z\right)^2}{2}\)(AM-GM)
\(\Rightarrow4-6x^2\ge3\left(y+z\right)^2\Leftrightarrow4\ge3\left[2x^2+\left(y+z\right)^2\right]\)
Áp dụng BĐT bunyakovsky: \(\left(1+2\right)\left[2x^2+\left(y+z\right)^2\right]\ge2\left(x+y+z\right)^2\)
\(\Rightarrow\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Vậy \(P_{Min}=-\sqrt{2}\) khi \(x=y=z=\dfrac{-\sqrt{2}}{3}\);\(P_{Max}=\sqrt{2}\)khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)
thi cấp tỉnh mà có bài là quá ngon rồi !
Áp dụng BĐT \((a+b+c)^2 \geq 3(ab+bc+ca)\) ta có:
\(\left(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\right)^2 \geq 3(x^2+y^2+z^2)=9\)
\(\Leftrightarrow \dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x} \geq 3\)
Đẳng thức xảy ra khi \(x=y=z=1\)
\(x+y+z-3=2\sqrt{x-2}+2\sqrt{y-2}+2\sqrt{z-2}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-2-2\sqrt{y-2}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-2}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y-2}=1\\\sqrt{z-2}=1\end{matrix}\right.\)
\(\Leftrightarrow x=y=z=3\)
\(\Rightarrow Q=\sqrt{\left(3-3+1\right)^{2012}}+\sqrt{\left(3-3\right)^{2014}}+\sqrt{\left(3-4\right)^{2016}}\)
\(=1+0+1=2\)
Ta có
a+1=a+a+b+c>= 4căn4 a^2bc
b+1=b+..........>=.........ab^2c
c+1=c...........>=..........abc^2
=> (a+1)(b+1)(c+1)/abc>= 64abc/abc ( nhân cho 1/abc)
=>(a+1)(b+1)(c+1)/abc >= 64 ( đpcm)
Chúc bạn học tốt!
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)
b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)
\(\Leftrightarrow4\sqrt{x-3}=2x\)
\(\Leftrightarrow2\sqrt{x-3}=x\)
\(\Leftrightarrow\sqrt{4x-12}=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a) điều kiện : \(x>0;x\ne4\)
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(P=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\sqrt{x}=\sqrt{3}+1\) \(\left(x>0\right)\)
thay vào P ta có \(P=\dfrac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1-2\right)}=\dfrac{\sqrt{3}+3}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{\sqrt{3}+3}{2}\)
\(P>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
ta có : \(\sqrt{x}+2>0\) và \(\sqrt{x}>0\) \(\left(x>0\right)\)
\(\Rightarrow p>0\) thì \(\sqrt{x}-2>0\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
vậy \(x>4\) thì P > 0
câu : a ; b ; c đầy đủ rồi nha quênh gi câu : a ; b ; c
a: Ta có: \(N=\dfrac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\dfrac{2-\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{4\sqrt{x}-7+4-x-2x+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+5\sqrt{x}-4}{x+\sqrt{x}-2}\)