Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=9-\left|x-\frac{1}{2}\right|\)
Vì : \(-\left|x-\frac{1}{2}\right|\le9\)
=> \(9-\left|x-\frac{1}{2}\right|\le9\)
Vậy GTLN của B là 9 khi \(x=\frac{1}{2}\)
Ta có : \(\left|x-\frac{1}{2}\right|\ge0\Rightarrow-\left|x-\frac{1}{2}\right|\le0\Rightarrow9-\left|x-\frac{1}{2}\right|\le9\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Max B = 9 <=> x = 1/2
Vì \(x\ge0\forall x\in R\)
=) \(x+\frac{3}{4}\ge\frac{3}{4}\forall x\in R\)
Dấu "=" xảy ra khi và chỉ khi : \(x+\frac{3}{4}=0\)
\(\Rightarrow x=-\frac{3}{4}\)
Vậy GTNN của \(A=\left|x+\frac{3}{4}\right|\) = 0 khi và chỉ khi \(x=-\frac{3}{4}\)
Ta có: \(\left(x+2\right)^2=0\) khi \(x=-2\)
\(\Rightarrow GTLN\)của \(A=\frac{3}{4}\)khi \(x=-2\)
Vậy GTLN của \(A=\frac{3}{4}\)
A lớn nhất <=>(x+2)2+5 nhỏ nhất
Ta có:(x+2)2\(\ge\)0 với mọi x
=>(x+2)2+5\(\ge\)5
Hay Min (x+2)2+5=5 khi x=-2
Vậy Max A=10/5=2 khi x=-2
Có: \(3\left[\left(x-2\right)^{10}+2\right]=3\left(x-2\right)^{10}+6\ge6\) với mọi x
\(=>A\le\frac{5}{6}\) với mọi x
Dấu "=" xảy ra <=> x-2=0<=>x=2
Vậy maxA=5/6 khi x=2