K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)                     B = \(\frac{5}{1.3}\)+ \(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C...
Đọc tiếp

1. Tính tổng: A = \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+ ... +\(\frac{2}{99.101}\)

                     B = \(\frac{5}{1.3}\)\(\frac{5}{3.5}\)+\(\frac{5}{5.7}\)+ ... +\(\frac{5}{99.101}\)

2. Chứng minh \(\frac{2n+1}{3n+2}\)và \(\frac{2n+3}{4n+4}\)là phân số tối giản với mọi số tự nhiên \(n\)

3. Với giá trị nào của \(x\inℤ\)các phân số sau có giá trị nguyên:

a) A =\(\frac{3}{x-1}\)  b) B = \(\frac{x-2}{x+3}\)  c) C = \(\frac{2x+1}{x-3}\)

4. Cho S =\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)\(\frac{1}{4^2}\)+ ... +\(\frac{1}{10^2}\). Chứng minh rằng \(\frac{9}{10}\)< S < \(\frac{9}{22}\)

5. Tìm số nguyên \(n\)để biểu thức \(A=\frac{n+1}{n+5}\)đạt 

a) Giá trị lớn nhất?

b) Giá trị nhỏ nhất?

6. Tìm số nguyên \(x\),\(y\)biết:

a) \(\frac{x}{2}\)\(\frac{2}{y}\)\(\frac{1}{2}\)

b) \(\frac{3}{x}\)\(\frac{y}{3}\)+\(=\frac{5}{6}\)

9
8 tháng 4 2021

1)

A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\)

A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{101}\)

A = \(\frac{1}{1}-\frac{1}{101}\)

A = \(\frac{100}{101}\)

Vậy A = \(\frac{100}{101}\)

B = \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

B = \(\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

B = \(\frac{5}{2}.\frac{100}{101}\)

B = \(\frac{250}{101}\)

Vậy B = \(\frac{250}{101}\)

8 tháng 4 2021

2) 

Gọi ƯCLN ( 2n + 1 ; 3n + 2 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\Rightarrow1⋮d}\)

\(\Rightarrow d=1\)

Vậy \(\frac{2n+1}{3n+2}\)là p/s tối giản

Gọi ƯCLN ( 2n+3 ; 4n+4 ) = d ( d \(\in\)N* )

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n+3⋮d\\\left(4n+4\right):2⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+2⋮d\end{cases}\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ...

22 tháng 4 2017

Làm bài 6 thôi nhé =)))

6. Số học sinh lớp 6A tương ứng với phân số 1/1 = 1

=> số học sinh trung bình ứng với phân số là: 1 - 1/3 - 2/5 = 4/15

Số học sinh lớp 6A có là: 12 : 4/15 = 45 (em)
Đ/s:..

22 tháng 4 2017

1/ Các ước nguyên của 5 là: -5; -1; 1; 5

2/ Ta có: \(\frac{3}{20}=\frac{3}{2}.\frac{1}{10}=\frac{3}{2}.\frac{10}{100}=3.5.\frac{1}{100}=15.\frac{1}{100}\)

=> \(\frac{3}{20}=15\%\)

3/ 

a/ 2.x-2005=1945 => 2x=2005+1995 => 2x=3950

=> x=3950:2

=> x=1975

b/ \(\frac{3}{10}.x=\frac{3}{5}\)

=> \(x=\frac{3}{5}:\frac{3}{10}\) => \(x=\frac{3}{5}.\frac{10}{3}\)

=> x=2

4/ (-16).67+33.(-16)=(-16)(67+33)=(-16).100=-1600

18 tháng 5 2020

câu 1b

Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*

Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d

suy ra: 2(3n-7) chia ht cho d ,  3(2n-5) chia ht cho d

suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d

dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1

Vậy......

          

18 tháng 5 2020

1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản 

Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1 

Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) )  = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1

=> \(\frac{3n-7}{2n-5}\) là phân số tối giản 

3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)

Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)

\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)

=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2

21 tháng 7 2020

Gọi \(d=UCLN\left(12n+1;30n+2\right)\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)

Suy ra phân số đã cho là phân số tối giản (đpcm)

Cái sau tương tự nha bạn

Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1

Vậy với x=1 thì C đạt giá trị nhỏ nhất

Cái sau tương tự nha bạn

21 tháng 7 2020

a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .

19 tháng 3 2016

ai giải cả 2 câu nhanh nhất mình cho

làm ơn đi mình cần gấp rùi híc híc

19 tháng 3 2016

còn câu 2 thì sao bạn có giải đc ko

12 tháng 8 2016

a) \(\frac{13}{x+3}\)

Để \(\frac{13}{x+3}\) là số nguyên thì 13 phải chia hết cho x + 3

=> x + 3 thuộc Ư (13) = { 1 ; 13 ; - 1 ; - 13 }

=> x thuộc { -2 ; 10 ; - 4 ; -16 }

\(\frac{x-2}{x+5}\)

Ta có: \(\frac{x-2}{x+5}=\frac{x+5-7}{x+5}=\frac{x+5}{x+5}-\frac{7}{x+5}=1-\frac{7}{x+5}\)

Để \(\frac{x-2}{x+5}\) là số nguyên thì \(\frac{7}{x+5}\) phải là số nguyên

=> x + 5 thuộc Ư (7) = { 1 ; 7 ; -1 ; -7 }

=> x thuộc { - 4 ; 2 ; - 6 ; - 12 }

c) \(\frac{2x+3}{x-3}\)

Ta có: \(\frac{2x+3}{x-3}=\frac{2\left(x-3\right)-3}{x-3}=\frac{2\left(x-3\right)}{x-3}-\frac{3}{x-3}=2-\frac{3}{x-3}\)

Để \(\frac{2x+3}{x-3}\) là số nguyên thì \(\frac{3}{x-3}\) phải là số nguyên

=> x - 3 thuộc Ư (3) = { 1 ; 3 ; - 1 ; -3 }

=> x thuộc { 4 ; 6 ; 2 ; 0 }

12 tháng 8 2016

b) Gọi ƯCLN(3n-2 , 4n-3) = d \(\left(d\ge1\right)\)

Ta có :

 \(\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}\) \(\Rightarrow\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}\) \(\Rightarrow\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}\)

\(\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1

Vì ƯCLN(3n-2 , 4n-3) = 1 nên phân số trên tối giản.

Các câu còn lại tương tự

11 tháng 5 2017

Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)\(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)\(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
\(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
\(\frac{7}{22}\)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU