\(\in N\)

b) Chứng minh n + 8 chia...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

Đặt ( n+3 ; 2n+5) = d

=> \(n+3⋮d\Rightarrow2.\left(n+3\right)⋮d\)(1)

=> \(2n+5⋮d\)(2)

Từ (1) và (2) => \(2.\left(n+3\right)-2n+5⋮d\)

=>\(2n+6-2n-5⋮d\)

=> \(1⋮d\)

vậy UCLN(n+3; 2n+5)=1

18 tháng 5 2017

Gọi d là ước chung của n+3 và 2n+5

Ta có n+3\(⋮\) d và 2n+5 \(⋮\)d

Suy ra (2n+6)-(2n+5)\(⋮\) d \(\Rightarrow\) 1\(⋮\)d

Vậy d=1

17 tháng 12 2017

Gọi d là ước chung của n + 3 và 2n + 5.

Ta có n + 3 ⋮ d và 2n + 5 ⋮ d.

Suy ra (2n + 6) - (2n + 5) ⋮ d

1 ⋮ d.

Vậy d = 1.

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

15 tháng 11 2017

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều

28 tháng 12 2017

Gọi ƯC(n+3;2n+5) là d

Ta có:

\(\left\{{}\begin{matrix}\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2.\left(n+3\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(\Rightarrow\) \(\left(2n+6-2n-5\right)⋮d\)

\(\Rightarrow\) 1 \(⋮\)d

\(\Rightarrow\) d = 1

Vậy ước chung của 2 số n + 3 và 2n + 5 là 1

28 tháng 12 2017

Gọi \(UC_{\left(n+3;2n+5\right)}=d\left(d\in N\right).\)

\(\Rightarrow\left\{{}\begin{matrix}n+3⋮d.\\2n+5⋮d.\end{matrix}\right.\)

\(\Rightarrow\left(n+3\right)-\left(2n+5\right)⋮d.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d.\)

\(\Rightarrow1⋮d.\)

\(d\in N.\)

\(\Rightarrow d=1.\)

Vậy \(UC_{\left(n+3;2n+5\right)}=1.\)