Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left[\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{3}{2x-1}-\dfrac{2\left(x-4\right)}{\left(x-4\right)\left(2x-5\right)}\right].\dfrac{2x\left(2x+3\right)-\left(2x+3\right)}{-2x\left(4x-7\right)-3\left(4x-7\right)}+1\)
\(=\left[\dfrac{2x-3-6x+15-4x+2}{\left(2x-5\right)}\right].\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)
\(=\dfrac{-2\left(4x-7\right)}{2x-5}.\dfrac{2\left(x+\dfrac{3}{2}\right)}{\left(-2x-3\right)\left(4x-7\right)}+1\)
\(=\dfrac{1}{2x-5}.2+1\)
\(=\dfrac{2+2x-5}{2x-5}\)
\(=\dfrac{-3+2x}{2x-5}\)
a: \(=\left(\dfrac{2x-3}{\left(2x-5\right)\left(2x-1\right)}-\dfrac{2x-8}{\left(2x-5\right)\left(x-4\right)}-\dfrac{3}{2x-1}\right)\cdot\dfrac{4x^2+4x-3}{-8x^2+2x+21}+1\)
\(=\dfrac{2x-3-2\left(2x-1\right)-3\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)}\cdot\dfrac{\left(2x+3\right)\left(2x-1\right)}{\left(4x-7\right)\cdot\left(-2x-3\right)}+1\)
\(=\dfrac{2x-3-4x+2-3x+12}{1}\cdot\dfrac{-1}{4x-7}+1\)
\(=\dfrac{5x-11}{4x-7}+1=\dfrac{9x-4}{4x-7}\)
b: |x|=1/2
=>x=1/2(loại) hoặc x=-1/2(nhận)
Khi x=-1/2 thì \(P=\dfrac{\dfrac{-9}{2}-4}{-2-7}=-\dfrac{17}{2}:\left(-9\right)=\dfrac{17}{18}\)
c: Để P là số nguyên thì \(36x-16⋮4x-7\)
\(\Leftrightarrow4x-7\in\left\{1;-1;47;-47\right\}\)
hay \(x\in\left\{2;\dfrac{3}{2};\dfrac{27}{2};-10\right\}\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0