K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs

3 tháng 4 2018

Vì pq +11 là số nguyên tố \(\Rightarrow\)pq +11 là số lẻ \(\Rightarrow\)pq là số chẵn \(\Rightarrow\)\(⋮\)2 hoặc q\(⋮\)2

  1. p\(⋮\)2 mà q là số nguyên tố \(\Rightarrow\)q = 2 

thay p = 2 vào 7p +q ta đc 14+ q mà 7p +q là số nguyên tố \(\Rightarrow\)14+q là số nguyên tố

 \(\Rightarrow\)14+q ko chia hết cho 3 mà 14 chia 3 dư 2 \(\Rightarrow\)\(⋮\)3 hoặc q chia 3 dư 2

  • q chia 3 dư 2 \(\Rightarrow\)q có dạng 3k+2 (k là số tự nhiên)

thay q=3k+2;p=2 vào pq +11 ta đc

2(3k+2)+11=6k+4+11=6k+15=3(2k+5)\(⋮\)3 và 3(2k+5) > 3 (KTM vì pq +11 là số nguyên tố)

  • \(⋮\)3\(\Rightarrow\)q có dạng 3a(a là số tự nhiên) 

mà q là số nguyên tố \(\Rightarrow\)q =1

2. chứng minh tương tự

đúng thì k nha

19 tháng 3 2018

Gúp mình nhanh lẹ nhá AI NHANH K CHO

5 tháng 4 2017

Có:

A = 17n + 111...1

A = 17n + n - (111...1 - n)

A = 18n - n (111...1 - n)

Vì 111...1 và n đều có số dư bằng nhau nên 111...1 - n chia hết cho 9

\(\Rightarrow\) 17n + 111...1 chia hết cho 9.

Chúc bạn học tốt!ok

5 tháng 4 2017

7n+n-(111..1-n)=18n-(111..11-n)
vì 111..11 và n đều có số dư bằng nhau nên
111..11-n chia hết cho 9=> 17n+111..11 chia hết cho 9

DD
7 tháng 1 2021

Nếu cả \(p,q\)đều là số lẻ thì \(pq+11\)là số chẵn nên không thể là số nguyên tố. 

Nếu \(p=2\):

\(q+14\)\(2q+11\)đều là số nguyên tố. 

Với \(q=3\)thỏa mãn. 

Với \(q>3\)thì \(q=3n+1\)hoặc \(q=3n+2\).

\(q=3n+1\)thì \(q+14=3n+15⋮3\).

\(q=3n+2\)thì \(2q+11=2\left(3n+2\right)+11=6n+15⋮3\).

Nếu \(q=2\):

\(7p+2\)\(2p+11\)đều là số nguyên tố. 

Xét các trường hợp của \(p\)tương tự trường hợp \(p=2\).

Kết luận: có các trường hợp thỏa mãn là \(\left(p,q\right)\in\left\{\left(2,3\right),\left(3,2\right)\right\}\)