Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a) ta gọi các số thuộc ƯC(16;24) là A ta có
\(A\in\left\{1;2;4;8\right\}\)
b)ta gọi các số thuộc ƯC(60;90) là B ta có
\(B\in\left\{1;2;3;5;6;10;15;30\right\}\)
Bài 3
a) gọi các số thuộc BC (13;15) là A
\(A\in\left\{195;390;585;780;...\right\}\)
b)gọi các số thuộc BC (10;12,15) là B
\(B\in\left\{60;120;180;240;300;...\right\}\)
bài 4
a)10=2.5
28=22.7
=> ƯCLN(10;28)=22.5.7=140
b) ƯCLN =16 vì 80 chia hết cho 16 , 176 chia hết cho 16
a)bài 5
16= 24
24=23.3
BCNN = 24.3=48
b)8=23
10=2.5
20=22.5
BCNN(8;10;20)=23.5=40
c)8=23
9=32
11=11
BCNN(8;9;11)=23.32.11
a) A = {0; 48; 96; 144, 192;...}
* Nhận xét: Tập hợp BC(12, 16) chính là tập hợp A.
b)
i. 24 = 23.3; 30 = 2.3.5
=> BCNN(24,30) = 23. 3.5= 120
=> BC(24, 30) = B(120) = {0; 120; 240; 360;...}
ii. 42 = 2.3.7; 60 = 22.3.5
=> BCNN(42, 60) = 420
=> BC(42, 60) = B(420) = {0; 420, 840; 1260;…}.
iii. 60 = 22.3.5
150 = 2.3.52
=> BCNN(60, 150) = 22.3.52 = 300
=> BC(60, 150) = B(300) = {0; 300, 600, 900, 1200;...}.
iv. 28 = 22.7; 35 = 5.7
=> BCNN(28, 35) = 22.5.7 = 140
=> BC(28, 35) = B(140) = {0; 140; 280; 420, 560;...}.
Bài 3:
a: \(\dfrac{11}{15}+\dfrac{9}{10}=\dfrac{110+135}{150}=\dfrac{245}{150}=\dfrac{49}{30}\)
b: \(\dfrac{5}{6}+\dfrac{7}{9}+\dfrac{11}{12}=\dfrac{30+28+33}{36}=\dfrac{91}{36}\)
Co :60=22.3.5
72=23.32
»UCLN(60,72)=22.3=12
»UC (60,72)=U(12)={1,2,3,4,6,12}.
b)B={x€N/x:12,x:15,x:18 va 0<x<300}
Vi:x:12,x:15,x:18
»x€BC(12,15,18)
Co: 12=22.3
15=5.3
18=32.2
»BCNN(12,15,18)=22.32.5=180»BC(12,15,18)=B(180)={0,180,360,...}
Vi: 0<x<300»x=180
»B={180}
Cau 2:
Co: 12=22.3
28=22.7
BCNN(12,28)=22.3.7=84
BC(12,28)=B(84)={ 0,84,168,252,336,.....}
Phan b cau tu lam nhe .co j thac mac thi nhan tin cho mk
Tìm a,b biết:
a) a . b = 240; BCNN(a,b) = 60
b) a . b = 360; (a,b) = 6
c) ƯCLN(a,b) = 6; BCNN(a,b) = 60
Vì ƯCLN(a,b)=6;BCNN(a,b)=60
=>a.b=360
nên ta đặt :a=6.a'
b=6.b'
Với (a',b')=1 ta có : a.b=360=>6a'.6b'=360=>36a'b'=360
=>a'b'=10
mà (a',b')=1, ta có bảng sau :
a' | 1 | 2 | 5 | 10 |
b'=10:a' | 10 | 5 | 2 | 1 |
a=6a' | 6 | 12 | 30 | 60 |
b=6b' | 60 | 30 | 12 | 6 |
Vậy (a,b)=(6;60);(12;30);(30;12);(60;6).
a,Vì BCNN(a,b)=60=>ƯCLN(a;b)=4
nên ta đặt a=4.a'
b=4.b'
(a',b')=1,ta có : 4a'.4b'=240=>16a'b'=240
=>a'b'=15
mà (a,'b')=1
Vậy (a,b)=(4;60);(20;12);(60;4);(12;20)
Lời giải:
a.
$ab=ƯCLN(a,b).BCNN(a,b)$
$\Rightarrow 9000=ƯCLN(a,b).900$
$\Rightarrow ƯCLN(a,b)=10$.
Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
$BCNN(a,b)=10xy=900$
$\Rightarrow xy=90$
Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:
$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$
Từ đây bạn dễ dàng tìm được $a,b$
b.
$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$
Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.
$\Rightarrow BCNN(a,b)=6xy=60$
$\Rightarrow xy=10$
Do $x,y$ nguyên tố cùng nhau nên:
$(x,y)=(1,10), (2,5), (5,2), (10,1)$
Từ đây dễ dàng tìm được $a,b$
Bài 3:
Ta có: \(x⋮126\)
\(x⋮198\)
Do đó: \(x\in BC\left(126;198\right)\)
\(\Leftrightarrow x\in B\left(1386\right)\)
mà x nhỏ nhất
nên x=1386