Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)
\(=21\left(1+...+4^{57}\right)⋮7\)
cứ tổng của 3 số liên tiếp được 1 số chia hết cho 7
=> (1+4+4^2)+(4^3+4^4+4^5)+.....+(4^57+4^58+4^59)(20 cặp số)
=> 21+ 4^3(1+4+4^2)+...+4^57(1+4+4^2)
......
Vì 21 chia hết cho 7=> 21.(........) chia hết cho 7=> A chia hết cho 7
đpcm
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
A) X = ( 2;3;4;6;10;18)
B) X = ( 0;1;2;3;5;7;11;23)
C) X = ( 2;3;21)
D) X = ( 0 ;1 ;2;12;37)
a) 10 ⋮ n-7
=> n-7 \(\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
=> \(n\in\left\{8;9;12;17\right\}\)
b) 42 ⋮ 2x+3
=> 2x+3 \(\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)
=> 2x \(\in\left\{0;3;4;11;18;39\right\}\)
=> x \(\in\left\{0;2;9\right\}\)
c) n+10 ⋮ n+1
=> n+1+9 ⋮ n+1
Mà n+1 ⋮ n+1
=> 9 ⋮ n+1
=> n+1 \(\inƯ\left(9\right)=\left\{1;3;9\right\}\)
=> n \(\in\left\{0;2;8\right\}\)
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
2. b)
Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a
Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a
Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)
315= 32.5.7
540= 22..33.5
ƯCLN(315;540) =5.32= 45
Vậy...
Ko chắc
2
a) ta có : aaa . bbb
=a . 111 . b . 111
=a . 37.3 .b .111
=> a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37
mình nghĩ thế , ko chắc đúng đâu nhé
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)