Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.
Suy ra (a+4) ∈ BC(6,7,9)
Mà a là số tự nhiên nhỏ nhất
Suy ra (a+4) = BC(6,7,9) = 3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122
Vậy số phải tìm là 126
b, Gọi số phải tìm là a, a ∈ N*
Vì a chia cho 17, 25 được các số dư theo thứ tự là 8 và 16.
nên (a+7) chia hết cho 8; 16.
Suy ra (a+7) ∈ BC(8;16)
Suy ra BCNN(8;16) = 16 => a+7 ∈ B(16) = 16k (k ∈ N).
Vậy số phải tìm có dạng 16k – 7
Bài 1:
Ta có:
$a-3\vdots 5, a-4\vdots 7$
$\Rightarrow a-3-5.3\vdots 5, a-4-7.2\vdots 7$
$\Rightarrow a-18\vdots 5, a-18\vdots 7$
$\Rightarrow a-18=BC(5,7)$
$\Rightarrow a-18\vdots BCNN(5,7)\Rightarrow a-18\vdots 35$
$\Rightarrow a=35k+18$ với $k$ tự nhiên.
Lại có:
$a-6\vdots 11$
$\Rightarrow 35k+12\vdots 11$
$\Rightarrow 35k+12-33k\vdots 11$
$\Rightarrow 2k+12\vdots 11$
$\Rightarrow 2(k+6)\vdots 11\Rightarrow k+6\vdots 11$
$\Rightarrow k=11m-6$ với $m$ tự nhiên.
$a=35k+18=35(11m-6)+18=385m-192$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ nhỏ nhất.
Mà $a\geq 0\Rightarrow 385m-192\geq 0\Rightarrow m>0$
$\Rightarrow$ m nhỏ nhất bằng 1
$\Rightarrow a_{\min}=385.1-192=193$