Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x) = ax5 + by4 + cz3 + dt2 + e (với x;y;z;g;e là 7 số tự nhiên liên tiếp và a;b;c;d là các hệ số nguyên)
Từ điều kiện c) ta có :
- Nếu số k đó là y hoặc t thì y = t = 0. Loại trường hợp này vì e là số tự nhiên mà e < t = 0
- Nếu số k đó là x; z hoặc e :
- Với k là x ta có ax5 + by4 + cz3 + dt2 + e = 0 => -ax5 = by4 + cz3 + dt2 + e
Dễ thấy by4 + cz3 + dt2 + e > 0 => -ax5 > 0 => .... tìm đc x
Tương tự tìm đc z hoăc e. Thử trong 3 số trên trường hợp nào thỏa mãn điều kiện b là ra.
do m ;m+k ; m+2k là số nguyên tố > 3
=> m ;m+k ;m+2k lẻ
=> 2m+k chẵn
mà 2m chẵn
=>k ⋮ 2
mặt khác m là số nguyên tố >3
=> m có dạng 3p+1 và 3p+2 (p∈ N*)
xét m=3p+1
ta lại có k có dạng 3a ;3a+1;3a+2(a∈ N*)
với k =3a+1 ta có 3p+1 + 2(3a+1) = 3(p+1+3a) loại vì m+2k là hợp số
với k = 3a+2 => m+k = 3(p+a+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k ⋮ 6
Sau khi thử bằng pascal thì em thấy bài này hình như có vô số nghiệm (Chắc là sai đề). Nhưng nếu ai tìm được công thức tổng quát của k thì hay biết mấy.
Tôi xin bài này để đăng lên trang face ông nhé :)
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2