K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

a) n + 7 = n + 2 + 5 chia hết cho n + 2

=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2

=> n+2 thuộc tập cộng trừ 1, cộng trừ 5

kẻ bảng => n = -1; -3; 3; -7

b) n+1 là bội của n-5

=> n+1 chia hết cho n-5

=> n-5 + 6 chia hết cho n-5

=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5

=> n-5 thuộc tập cộng trừ 1; 2; 3; 6 

kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1

8 tháng 2 2020

a)Ta có:  (n+7)\(⋮\)(n+2)

    \(\Rightarrow\) (n+2+5)\(⋮\)(n+2)

    Mà: (n+2)\(⋮\) (n+2)

    \(\Rightarrow\) 5\(⋮\)(n+2)

     \(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}

     \(\Rightarrow\) n\(\in\){-1;-3;3;-7}

22 tháng 7 2015

-11 là bội của n-1

=> -11 chia hết cho n-1

=> n-1 thuộc Ư(-11)

n-1n
12
-10
1112
-11-10

KL: n thuộc......................

22 tháng 7 2015

nhìu qá bn ơi (kq thui đc k)

20 tháng 1 2018

a, n+2 chia hết cho n-3

Suy ra (n-3)+5 chia hết cho n-3

Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3

suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}

Ta có bảng giá trị

n-3-1-515
n2-248

Vậy n={2;-2;4;8}

b, ta có Ư(13)={-1;-13;1;13}

ta có bảng giá trị

x-3-1-13113
x2-10416

Vậy n={2;-10;4;16}

c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}

ta có bảng giá trị

x-2-1-111-3-371311137
x1-99-1-393511339

Vậy n={1;-99;-1;-39;3;5;113;39}

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

31 tháng 1 2018

a)    \(n-4\)\(⋮\)\(n-1\)

\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)

Ta thấy         \(n-1\)\(⋮\)\(n-1\)

\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)

hay        \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta lập bảng sau:

\(n-1\)         \(-3\)             \(-1\)                \(1\)               \(3\)

\(n\)                  \(-2\)                \(0\)                 \(2\)               \(4\)

Vậy....

31 tháng 1 2018

a)    \(n-4\)\(⋮\)\(n-1\)

\(\Leftrightarrow\)\(\left(n-1\right)-3\)\(⋮\)\(n-1\)

Ta thấy         \(n-1\)\(⋮\)\(n-1\)

\(\Rightarrow\)\(3\)\(⋮\)\(n-1\)

hay        \(n-1\)\(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Ta lập bảng sau:

\(n-1\)        \(-3\)             \(-1\)                \(1\)               \(3\)

\(n\)                  \(-2\)                \(0\)                 \(2\)               \(4\)

Vậy....

11 tháng 10 2021
Để tìm bội của n ( n khác 0 ) ta:....