\(P\left(y\right)=3y+6\)

b) Chứng tỏ rằng đa thức sau khô...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

 

26 tháng 8 2016

+) P (y) = 3y+ 6 có nghiệm nếu : 3y+ 6= 0

=> 3y= 0- 6

=> 3y= -6

=> y= -2

Vậy đa thức P(y) có nghiệm: y= -2

+ ) Q( y)= y4 + 2 nếu có nghiệm thì: y +2= 0

=> y4= -2

=> Q( y) = y4 +2 k có nghiệm.

19 tháng 4 2017

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

19 tháng 4 2017

a) Giả sử: P (y) = 0

=> 3y+6 = 0

=> 3y = -6

=> y =-2

Vậy y = -2 là một nghiệm của đa thức P (y)

b) Giả sử: Q (y) = 0

=> y4 + 2 = 0

=> y4 = -2

Vì y4 \(\ge\) 0 \(\forall\) y

nên y4 = -2 là vô lí

Vậy đa thức Q (y) = y4 + 2 không có nghiệm

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

1 tháng 3 2019

a,ta có \(G\left(y\right)=-\left(y+2\right)^2\)

có nghiệm là -2

b,ta có:

1 tháng 3 2019

Câu a làm giống bạn kia đc rồi

b, Dễ thấy H(x) > 0 nên pt éo có nghiệm =((

Lục đục nãy giờ mới thấy :/

7 tháng 5 2018

Bài 1:

a)2x-6

Ta có:2x-6=0

2x=6

=>x=3

Vậy x=3 là nghiệm của đa thức a)

b)(6-x)(4-2x)

Ta có:(6-x)(4-2x)=0

Th1:6-x=0 =>x=6

Th2:4-2x=0

2x=4 =>x=2

Vậy x=2 và 6 là nghiệm của đa thức b)

c)x2+x

Ta có:x2+x=0

x(x+1)=0

TH1:x=0

TH2:x+1=0 =>x=-1

Vậy x=0 và -1 là nghiệm của đa thức c)

d)x2-81

Ta có:x2-81=0

x2=81

=>x=+_ 9

Vậy x=+_ 9 là nghiệm của đa thức d)

e)(2-x)(x2+1)

Ta có:(2-x)(x2+1)=0

TH1:2-x=0 =>x=2

TH2:x2+1=0

x2=-1 (loại)

Vậy x=2 là nghiệm đa thức e)

Bài 2:

P(x)=-2-3x2

Ta có:

-3x2≤0 với mọi x

=>-2-3x2<-2 với mọi x

Vậy đa thức P(x) vô nghiệm

Q(y)=y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)

Ta có:

y2≥0 với mọi y

y4≥0 với mọi y

=>\(\dfrac{1}{4}\)y4≥0 với mọi y

=>y2+\(\dfrac{1}{4}\)y4≥0 với mọi y

=>y2+\(\dfrac{1}{4}\)y4+\(\dfrac{1}{4}\)\(\dfrac{1}{4}\)>0 với mọi y

Vậy đa thức Q(y) vô nghiệm

Cảm ơn bạn rất nhiềuhihihahahehehiha

12 tháng 4 2017

a. Ta có: \(x^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow x^2+1>0\)

Suy ra: \(P\left(x\right)=x^2+1\) không có nghiệm

b. Ta có: \(y^4\ge0\) với mọi \(y\in R\)

\(\Rightarrow2y^4\ge0\)

\(\Rightarrow2y^4+5>0\)

Suy ra \(Q\left(y\right)=2y^4+5\) không có nghiệm

12 tháng 4 2017

a) Ta có:

\(x^2\ge0\) (1)

\(1>0\) (2)

Từ (1)(2) \(\Rightarrow x^2+1>0\Rightarrow x^2+1\ne0\)

Vậy đa thức P(x) = x2 + 1 vô nghiệm

b) Ta có:

\(y^4\ge0\Rightarrow2y^4\ge0\) (1)

\(5>0\) (2)

Từ (1)(2) \(\Rightarrow2y^4+5>0\Rightarrow2y^4+5\ne0\)

Vậy đa thức Q(y) = 2y4 + 5 vô nghiệm

24 tháng 4 2017

a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)

=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)

=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

__________________________________

P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)

- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)

_________________________________________

P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

c)Thay x=0 vào đa thức P(x), ta có:

P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)

=0+0-0-0-0

=0

Vậy x=0 là nghiệm của đa thức P(x).

Thay x=0 vào đa thức Q(x), ta có:

Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)

=0+0-0+0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=\(\dfrac{-1}{4}\)

Vậy x=0 không phải là nghiệm của đa thức Q(x).

19 tháng 4 2017

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x53x2+7x49x3+x214xP(x)=x5−3x2+7x4−9x3+x2−14x

=x5+7x49x32x214x=x5+7x4−9x3−2x2−14x

Q(x)=5x4x5+x22x3+3x214Q(x)=5x4−x5+x2−2x3+3x2−14

=x5+5x42x3+4x214=−x5+5x4−2x3+4x2−14

b) P(x) + Q(x) = (x5+7x49x32x21

a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)

\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)

\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)

\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)

b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)

\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm

31 tháng 5 2015

a)M(x)=x2+5x+4=0

        x2+x+4x+4=0

         (x2+x)+(4x+4)=0

        x(x+1)+4(x+1)=0

         (x+1)(x+4)=0

=>x+1=0 hoặc x+4=0

   x=-1     hoặc  x   =-4

Vậy nghiệm của đa thức M(x) là x=-1;-4

b)ta có M(x)+4=x2+5x+4+4=x2+5x+8

                     =x2+\(\frac{5}{2}.x+\frac{5}{2}.x+\frac{25}{4}+\frac{7}{4}\)

                     =(x2+\(\frac{5}{2}.x\))+(\(\frac{5}{2}.x+\frac{25}{4}\))+\(\frac{7}{4}\)

                     =x(x+\(\frac{5}{2}\))+\(\frac{5}{2}\)(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)

                     =(x+\(\frac{5}{2}\))(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)

                    =(x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)

=>M(x)+4=0 thì (x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)=0

                        (x+\(\frac{5}{2}\))2=\(\frac{-7}{4}\)(vô lí )

Vậy M(x)+4 không có nghiệm

31 tháng 5 2015

a) M (x) = 0 <=> x2 + 5x + 4  = 0

<=> (x2 + 4x) + (x + 4) = 0 

<=> x.(x + 4) + (x + 4) = 0

<=> (x+ 4).(x + 1) = 0 

<=> x + 4 = 0 hoặc x + 1 = 0 

<=> x = - 4 hoặc x = -1

Vậy nghiệm của M (x) là -4; -1

b) M(x) + 4 = x2 + 5x + 4  + 4 = x2 + 5x + 8

= x2 + \(\frac{5}{2}\).x + \(\frac{5}{2}\).x  + 8=  (x2 + \(\frac{5}{2}\).x)  +( \(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{4}\)   + 8  

= x.(x + \(\frac{5}{2}\) ) + \(\frac{5}{2}\).(x + \(\frac{5}{2}\)) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) ).(x + \(\frac{5}{2}\) ) + \(\frac{7}{4}\)  = (x + \(\frac{5}{2}\) )2 + \(\frac{7}{4}\) \(\ge\) 0 + \(\frac{7}{4}\) > 0 với mọi x

Vậy M(x) + 4 không có nghiệm

 

 

5 tháng 5 2018

bạn trả lời vs thầy là :

" bài này nhìn qua cx biết nó > 0 oy, nên vô nghiệm "

chỉ có những thằng thiểu năng mới hỏi câu kiểu này

5 tháng 5 2018

a, \(x^2+1\)

Có \(x^2\ge0\forall x\)=>x^2+1 >0

vậy đa thức vô nghiệm

b,(2x+1)^2+3

 có (2x+1)^2\(\ge\)0 với mọi x

 =>(2x+1)^2+3>0 

=>đa thức này không có nghiệm