\(n^2+2006\) là 1 số chính phương.

b)cho n là số nguyên tố lớn hơn 3....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

26 tháng 5 2018

a)Giả sử \(n^2\) + 2006 = m^2 (m,n la số nguyên)
Suy ra n\(^2\) - \(m^2\) =2006 \(\Leftrightarrow\) ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 là một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

b)n là số nguyên tố > 3 nên không chia hết cho 3

Vậy n\(^2\)\(⋮\)3 dư 1

Do đó n\(^2\)+2006=3m+1

+2006=3m+2007=3.(m+669)chia hết cho 3

Vậyn\(^2\)+2006 là hợp số

26 tháng 5 2016

Đặt n2 + 2006 = a2 (a Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (kN*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

26 tháng 5 2016

n là số nguyên tố lớn hơn 3 => n2 đồng dư với 1 (mod 3)

n2+2006 đồng dư với 1+2006 (mod 3)

<=> n+ 2006 đồng dư với 2007 (mod 3) đồng dư với 0 (mod 3) (*Vì 2007 chia hết 3*)

=> n2 +2006 chia hết 3

Vậy n2 +2006 là hợp số

5 tháng 4 2015

dễ mà

ta thấy n^2 là 1 số chính phương mà 1 số chính phương chia 3 dư 0 ;1

do n là snt >3=>n^2chia 3 dư1

=>n^2=3k+1

=>n^2+2006=3k+1+2006=3k+2007=3(k+669) chia hết cho 3

vậy n^2+2006 là hợp số

18 tháng 12 2016

hop so

14 tháng 2 2016

câu hỏi tương tự nha bạn

14 tháng 2 2016

bai toan nay kho @gmail.com

26 tháng 5 2018

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số

24 tháng 3 2015

a) n ko có giá trị nào

b) n^2 + 2006 là hợp số

12 tháng 5 2017

A n ko co gia ch nao minh chi biet con a thoi 

12 tháng 2 2016

Đặt 2n + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=> => a + n và a - n có cùng tính chẵn lẻ

+) TH1 : a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+) TH2 : a + n và a - n cùng chẵn => a(a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2 + 2006 là số chính phương

b) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k thuộc N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số (1)

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 201 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số (2)

Từ (1) và (2) thỏa mãn 2 điều kiện

=> n2 + 2006 là hợp số

12 tháng 2 2016

bai toan nay kho

4 tháng 4 2015

Gọi b là số tự nhiên đó.

Vì b chia cho 7 dư 5,chia cho 13 dư 4 

=>b+9 chia hết cho 7

b+9 chia hết cho 13

=>b+9 chia hết cho 7.13=91

=>b chi cho 91 dư 91-9=82

=>điều phải chứng minh

1 tháng 2 2016

n là số nguyên tố lớn hơn 3 => n=3k+1 hoặc n=3k+2  (k la so tu nhien)

Nếu n=3k+1 => n^2+2006=(3k+1)^2+2006=9k^2+6k+1+2006=9k^2+6k+2007 =3(3k^2+2k+669) chia hết cho 3 và >3 nên là hop so

Nếu n=3k+2 =>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010  chia hết cho 3 và > 3 nen là hop so

 

 

bài 2

 

n^2+2006=a^2  => 2006=a^2-n^2=(a-n)(a+n)

ta co n-a-(n+a)=-2a là số chẵn nên a-n và a+n cùng tính chẵn lẻ

ta thấy 2006 là số chẵn nên a-n và a+n cùng chẵn nên (a+n)(a+n) chia hết cho 4 mà 2006 ko chia hé t cho 4 nên ko có x