Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{4x+3}{x-2}=\frac{2\left(x-2\right)+7}{x-2}=2+\frac{7}{x-2}\)
Để \(A\in Z\)thì \(7⋮x-2\)hay x-2 là Ư(7)={1;-1;7;-7}
Do đó:
x-2 | 1 | -1 | 7 | -7 |
x | 3 | 1 | 9 | -5 |
Vậy .....
Ta có : \(B=\frac{2x-15}{x+1}=\frac{2\left(x+1\right)-17}{x+1}=2-\frac{17}{x+1}\)
Để \(B\in Z\)thì \(17⋮x+1\)hay x+1 là Ư(17)={1;-1;17;-17}
Do đó :
x+1 | 1 | -1 | 17 | -17 |
x | 0 | -2 | 16 | -18 |
Vậy ................
\(x-1=\left(x-1\right)^5\)
\(\left(x-1\right)-\left(x-1\right)^5=0\)
\(\left(x-1\right)\left[1-\left(x-1\right)^4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\1-\left(x-1\right)^4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
b) \(\frac{2}{x-1}+\frac{y-1}{3}=\frac{1}{6}\)
Câu 1: -3
Câu 3: 991
Câu 4: -4;4
Câu 5: 2
Câu 6: 302
Câu 7: 3
Mk chắc chắn là đúng đó
câu 1:-3
câu 2:minh chiu
câu 3:991
câu 4:-4;4
câu 5:2
câu 6:302
câu 7:3
bạn cứ làm thử xem
Câu 2:
25.20,04 + 75.20, 04 - 2004.20,03 + 2004.20,04
= 20,04(25 + 75 - 2003 + 2004)
= 20,04.101 = 2024,04
C3: A=\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{2011\cdot2013}+\frac{2}{2013\cdot2015}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\left(\frac{1}{3}-\frac{1}{2015}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{2013}-\frac{1}{2013}\right)\)
\(=\left(\frac{2015}{6045}-\frac{3}{6045}\right)+0+...+0=\frac{2012}{6045}\)
mấy câu kia mình lười làm lắm bạn
Chúc bạn học tốt!^_^
a) Ta thấy ƯCLN(a,b)=8 và BCNN(a,b)=48 => ƯCLN(a,b) . BCNN(a,b) = a . b = 8 . 48 = 384
Vì ƯCLN(a,b) = 8, nên ta đặt:
a = 8.c; b = 8.d; ƯCLN(c,d) = 1
theo bài ta có:
a . b = 384
hay:8.c . 8.d = 384
=> 64 . c.d = 384
c.d = 6
ta có bảng :
c 1 2
d 6 3
nếu c=1 và d=6 thì a=8 và b=48 hoặc a=48 và b=8
c=2 và d=3 thì a=16 và b=24 hoặc a=24 và b=16
kết luận tự làm
còn lại để hôm khác
b)
(+) Hiển nhiên A chia hết cho 6 vì các số hạng của S đều chia hết cho 6 (1)
(+) Ta có:\(S=6+6^2+6^3+....+6^{100}\)
\(S=\left(6+6^2\right)+\left(6^3+6^4\right)+....+\left(6^{99}+6^{100}\right)\)
\(S=6.\left(1+6\right)+6^3.\left(1+6\right)+.....+6^{99}.\left(1+6\right)\)
\(S=6.7+6^3.7+.....+6^{99}.7=\left(6+6^3+...+6^{99}\right).7\)
=>S chia hết cho 7 (2)
Từ (1) và (2) ;kết hợp với (6;7)=1
=>S chia hết cho 42 (đpcm)