Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\overline{2021ab}⋮31\Leftrightarrow202100+\overline{ab}⋮31\Leftrightarrow11+\overline{ab}⋮31\Leftrightarrow\overline{ab}\in\left\{20;51;82\right\}\).
Vậy..
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
a) Gọi số tự nhiên cần tìm là a
Ta có: a+1 chia hết cho 3
a+1 chia hết cho 4
a+1 chia hết cho 5
a+1 chia hết cho 10
\(\Rightarrow\) a+1 \(\in\) B(3;4;5;10)
Lại có: BCNN(3;4;5;10) là 60
\(\Rightarrow\) a = 59
Bài 1 : Giải :
Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3
a chia cho 4 dư 2 => a + 2 \(⋮\)4
a chia cho 5 dư 3 => a + 2 \(⋮\)5
a chia cho 6 dư 4 => a + 2 \(⋮\)6
=> a + 2 \(\in\) BC( 3,4,5,6 )
3 = 3
4 = 22
5 = 5
6 = 2 .3
BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60
BC( 3,4,5,6 ) = { 0;60;120;180;... }
Mà : a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = 60
=> a = 60 - 2 = 58
Vậy số tự nhiên cần tìm là 58
Bài 2 : Giải :
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)
\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
Vậy : A = 2
Bài 3: Giải :
Quy đồng tử số , ta có :
\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)
=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .
Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .
Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .
Tổng số phần bằng nhau là :
21 + 22 + 27 = 70
Số thứ nhất là :
210 : 70 . 21 = 63
Số thứ hai là :
210 : 70 . 22 = 66
Số thứ ba là :
210 - 63 - 66 = 81
Đáp số : ...
Vì a chia 7 dư 5 => a=7m+5 \(\left(m\in N\right)\)
b chia 7 dư 2 => b=7n+2 \(\left(n\in N\right)\)
a) \(a+b=7n+2+7m+5=7n+7m+7=7.\left(m+n+1\right)\)
ta có: \(7⋮7\Rightarrow7.\left(m+n+1\right)⋮7\left(v\text{ì}m,n\in N\right)\)
\(\Rightarrow\left(a+b\right)⋮7\)
=> (a+b):7 dư 0
Vậy (a+b):7 dư 0
b) \(a.b=\left(7m+5\right).\left(7n+2\right)=49mn+14m+35n+10=7.\left(7mn+2m+5n+1\right)+3\)
Có \(\hept{\begin{cases}7.\left(7mn+2m+5n+1\right)⋮7\left(v\text{ì}7⋮7;m,n\in N\right)\\3:7=0d\text{ }\text{ư}3\end{cases}}\)
\(\Rightarrow7.\left(7mn+2m+5n+1\right)+3:7d\text{ư}3\)
\(\Rightarrow a.b:7d\text{ư}3\)
Vậy a.b:7 dư 3
Tham khảo nhé~
a) Gọi ƯCLN (21n+4 ; 14n+3) =d ( ĐK: d \(\inℕ^∗\))
=> \(\hept{\begin{cases}21n+4\\14n+3\end{cases}}\)\(⋮\)d
=> \(\hept{\begin{cases}2.\left(21n+4\right)\\3.\left(14n+3\right)\end{cases}}\)\(⋮\)d
=>\(\hept{\begin{cases}42n+8\\42n+9\end{cases}}\)\(⋮\)d
=> (42n+9) - (42n+8) \(⋮\)d
42n+9 - 42n - 8 \(⋮\)d
( 42n - 42n) + ( 9 - 8) \(⋮\)d
=> 1\(⋮\)d
=> d = 1
=> ƯCLN ( 21n+4 ; 14n+3 ) = 1
Vậy phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản
b) mk k bt làm
Chúc bn hok tốt!!
Nếu đúng thì tk mk nha
\(\text{Gọi ƯCLN( 21n + 4 , 14n + 3 ) là d}\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{Phân số }\frac{21n+4}{14n+4}\text{ là phân số tối giản}\)
gọi số đó là a suy ra a-3 chia hết cho 5 và a-4 chia hết cho 7
Từ a-3 chia hết cho 5 suy ra a-18 chia hết cho 5
từ a-4 chia hết cho 7 suy ra a-18 chia hết cho 7
suy ra a-18 thuộc BC(5;7).Mà a nhỏ nhất suy ra a-18 nhỏ nhất suy ra a-18 là BCNN
suy ra a-18=0 suy ra a=18
a/
\(\overline{2021ab}=202100+\overline{ab}=6519.31+11+\overline{ab}⋮31\)
\(6519.31⋮31\Rightarrow11+\overline{ab}⋮31\)
=> \(\overline{ab}=20\) hoặc \(\overline{ab}=51\) hoặc \(\overline{ab}=82\)
b/ 536 chia b dư 11; 2713 chia b dư 13 nên b>13
\(536-11=525⋮b\Rightarrow5.525=2625⋮b\)
\(2713-13=2700⋮b\)
\(\Rightarrow2700-2625=75⋮b\)
=> b=5 hoặc b=25 hoặc b=75. Do b>13 => b=25 hoặc b=75