K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

a, A= 4/5 + l 2x-3 l

vì lxl >hoặc= 0

=) l 2x-3 l >hoặc= 0 

=) 4/5 + l 2x-3 l >hoặc= 4/5

=) A đạt GTNN là 4/5 khi 2x-3 = 0  =) x=3/2

b, B = 1/2(x-1)2+ 3

vì x2 > hoặc = 0 =) (x-1)2 > hoặc = 0 

=) 1/2(x-1)2 > hoặc = 0 

=) 1/2(x-1)2+ 3 > hoặc = 3

vậy GTNN  của B=3 khi x-1=0=) x=1 (ở đây ko thể đc là GTLN bn ak vì sau 1/2(x-1)2 là dấu + và  1/2(x-1)2 luôn dương nên khi cộng 3 vào sẽ lớn hơn 3 )

6 tháng 7 2017

Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

Nên (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1

2 tháng 10 2019

\(P=x^2-2x+5\)

\(P=x^2-2x+1+4\)

\(P=\left(x-1\right)^2+4\ge4\)

=> GTNN của P = 4 

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy................

6 tháng 7 2017

1) a)

 \(P=x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x+2\right)^2+1\ge1\)

vậy min O =1 khi x= -2

6 tháng 7 2017

1) 

c) K = 4x - x2 - 5 

= -x2 + 4x - 4 - 1

= - (x2 - 4x + 4) - 1

= - (x - 2)2 - 1

Vì (x - 2)2 \(\ge0\forall x\)

=>  - (x - 2)\(\le0\forall x\)

=> -(x - 2)2 \(\le-1\forall x\)

Vậy GTLN của biểu thức là - 1 khi và chi x = 2

8 tháng 8 2019

B1: 

a, \(4x^2+y\left(y-4x\right)-9\)

\(=4x^2+y^2-4xy-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

8 tháng 8 2019

1.

b) \(a^2-b^2+a-b\)

\(=\left(a^2-b^2\right)+\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b+1\right)\)

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)