K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6

10 tháng 10 2020

Bài 1:

Ta có: \(2x+\left|x-3\right|=4\)

\(\Leftrightarrow\left|x-3\right|=4-2x\)

Điều kiện: \(4-2x\ge0\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(PT\Leftrightarrow\orbr{\begin{cases}x-3=4x-2\\x-3=2-4x\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\5x=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Vậy x = 1

10 tháng 10 2020

Bài 2:

a) Ta có: \(A=\left|3x+5\right|+4\ge4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3x+5\right|=0\Rightarrow x=-\frac{5}{3}\)

Vậy Min(A) = 4 khi x = -5/3

b) Ta có: \(B=-\left|2x+1\right|+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|2x+1\right|=0\Rightarrow x=-\frac{1}{2}\)

Vậy Max(B) = 10 khi x = -1/2

26 tháng 1 2017

Giá trị của p/số càng lớn khi mẫu số càng nhỏ. Ta có x-1 là số dương nhỏ nhất(nếu là số âm thì sẽ kéo theo phân số càng nhỏ, khác 0 nữa nhé) .Vậy

x-1=1

X=2

26 tháng 1 2017

x=2=>A=(5-2.2)/(2-1)

=1/1=1

Vậy GTLN của A là 1

12 tháng 12 2016

có GTNN chứ đâu có GTLN

12 tháng 7 2018

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

13 tháng 7 2018

bạn trả lời đúng rùi

5 tháng 5 2023

Câu 2:

\(A\left(x\right)=x^2+3x+1\)

\(B\left(x\right)=2x^2-2x-3\)

a) Tính A(x) là sao em?

b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)

\(=x^2+3x+1+2x^2-2x-3\)

\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)

\(=3x^2+x-2\)

5 tháng 5 2023

Câu 1:

\(M\left(x\right)=x^3+3x-2x-x^3+2\)

\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)

\(=x+2\)

Bậc của M(x) là 1

11 tháng 10 2021

a) \(\dfrac{2x+3}{24}=\dfrac{3x-1}{32}\)

\(\Rightarrow32\left(2x+3\right)=24\left(3x-1\right)\)

\(\Rightarrow64x+96=72x-24\)

\(\Rightarrow8x=120\Rightarrow x=15\)

b) \(\dfrac{13x-2}{2x+5}=\dfrac{76}{17}\)

\(\Rightarrow17\left(13x-2\right)=76\left(2x+5\right)\)

\(\Rightarrow221x-34=152x+380\)

\(\Rightarrow69x=414\Rightarrow x=6\)

4 tháng 4 2017

a) A+B=x2+1+3-4x=0 

<=> x2-4x+4=0 <=> (x-2)2=0

=> x=2

b) \(\frac{1}{A+B}=\frac{1}{\left(x-2\right)^2}\)

Để Biểu thức có giá trị nguyên => 1 phải chia hết cho (x-2)2 => (x-2)2=1 => x-2=-1 và x-2=1

=> x=1 và x=3

c) \(\frac{B}{A}=\frac{3-4x}{x^2+1}\)

5 tháng 4 2017

cảm ơn bạn nhiều