Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)
GTNN của A là 25 khi và chỉ khi x=5
\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)
GTNN của B là -16 khi x=2
b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)
GTLN của C là -5 khi và chỉ khi x=-3
\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)
GTLN của D là 14 khi và chỉ khi x = -1
a, Tìm giá trị nhỏ nhất của biểu thức:
A = \(|x-5|+25\)
Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất
\(\Rightarrow\)\(|x-5|\)nhỏ nhất
Mà \(|x-5|\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\) \(|x-5|\)\(=0\) (1)
Thay (1) vào A, ta có:
A = 0 + 25
A = 25
Vậy giá trị nhỏ nhất của A là 25
\(B=-16+\left(x-2\right)^2\)
Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất
\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất
Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)
\(\Rightarrow\left(x-2\right)^2\)\(=0\) (2)
Thay (2) vào B, ta có :
B = \(-16+0\)
B = \(-16\)
Vậy giá trị nhỏ nhất của B là -16
Ta có : A = | x - 3 | + 10 > 0
Vì | x - 3 |\(\ge\)0
Dấu = Xảy ra <=> x = 3
Vậy gtnn của A = 10 <=> x = 3
Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)
\(\Rightarrow A=\left|x-3\right|+10\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Amin =10 khi và chỉ khi x = 3
Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmin = -7 khi và chỉ khi x = 1
Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Cmax = -3 khi và chỉ khi x = 2
Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy Dmax = 15 khi và chỉ khi x = 2
Bài 1 ) \(P=\left|x-1\right|+5\)
Ta có : \(\left|x-1\right|\ge0\)
\(\Leftrightarrow\left|x-1\right|+5\ge5\)
Dấu " = " xảy ra khi và chỉ khi \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(Min_P=5\Leftrightarrow x=1\)
Bài 2 ) \(Q=7-\left|5-x\right|\)
Ta có : \(\left|5-x\right|\ge0\)
\(\Rightarrow7-\left|5-x\right|\le7\)
Dấu " = " xảy ra khi và chỉ khi \(5-x=0\)
\(\Leftrightarrow x=5\)
Vậy \(Max_Q=7\Leftrightarrow x=5\)
a, A =I x - 3I +10
\(\Rightarrow A\ge10\)( I x - 3 I luôn lớn hơn hoặc bằng 0 vs mọi x)
Dấu ''='' xảy ra khi x-3=0
<=>x = 3
Vậy giá trị nhỏ nhất của A là 10 khi x = 3
b, \(B=-7+\left(x-1\right)^2\)
\(\Rightarrow B\ge-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
Vậy giá trị nhỏ nhất của B là -7 khi x=1
c, C= -3 - I x -2I
\(\Rightarrow C\le-3\)( Vì I x - 2 I luôn luôn lớn hơn hoặc bằng 0 với mọi x)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 = 0 <=> x=2
Vây giá trị lớn nhất của C là - 3 khi x = 2.
d, \(D=15-\left(x-2\right)^2\)
\(\Rightarrow D\le15\)
Dấu ''='' xảy ra khi và chỉ khi : x - 2 =0 <=> x =2
Vây giá trị lớn nhất của D là 15 khi x = 2
\(Thay\) \(x=-4;y=-3\) \(vào\) biểu thức : (-15) . x + (-7) .y
Ta được : (-15) . (-4) + (-7) . (-3)
= 60 + 21
= 81
Vậy giá trị cần tìm của biểu thức là 81
b) Thay x= -4; y= -3 vào biểu thức : (315 - 427) x + (46-89) y
Ta được : (315 - 427). (-4) + ( 46 - 89) . (-3)
= -112 . (-4) + (-43) . (-3)
= 448 + 129
= 577
Vậy giá trị cần tìm của biểu thức là 577
a) Ta có: \(-\left|x\right|\le0\)
\(-\left(y+4\right)^4\le0\)
\(\Rightarrow-\left|x\right|-\left(y+4\right)^4\le0\)
\(\Rightarrow A=10-\left|x\right|-\left(y+4\right)^4\le10\)
Vậy \(MAX_A=10\) khi \(x=0;y=-4\)
b) Hình như sai đề thì phải
c,\(43+x=2.5^2-\left(x-57\right)\)
\(< =>43+x=50-x+57\)
\(< =>2x=50+57-43\)
\(< =>x=\frac{107-43}{2}=32\)
d,\(-3.2^2\left(x-5\right)+7\left(3-x\right)=5\)
\(< =>-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(< =>-12x+60+21-7x=5\)
\(< =>-19x=5-81=-76\)
\(< =>x=-\frac{76}{-19}=4\)
Bài 2:
a) \(A=\left|x-3\right|+10\)
Vì \(\left|x-3\right|\ge0\forall x\)\(\Rightarrow\left|x-3\right|+10\ge10\forall x\)
hay \(A\ge10\)
Dấu " = " xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(minA=10\Leftrightarrow x=3\)
b) \(B=-7+\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-7+\left(x-1\right)^2\ge-7\forall x\)
hay \(B\ge-7\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=-7\Leftrightarrow x=1\)
a) Ta có :\(\left|3-x\right|\ge0\forall x\in R\)
Nên : \(-\left|3-x\right|\le0\forall x\in R\)
Do đó : \(Q=1010-\left|3-x\right|\le1010\forall x\in R\)
Vậy \(Q_{max}=1010\) đấu "=" xày ra khi |3 - x| = 0
<=> 3 - x = 0
<=> x = 3
b) Ta có : \(\left(3-x\right)^2\ge0\forall x\in R\)
Nên : \(\left(3-x\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\frac{5}{\left(3-x\right)^2+1}\le\frac{5}{1}=5\)
Vậy \(C_{max}=5\) dấu bằng sảy ra khi (3 - x)2 + 1 = 1
<=> (3 - x)2 =0
<=> 3 - x = 0
<=> x = 3
c) Ta có : \(\left|x-2\right|\ge0\forall x\)
Nên : \(\left|x-2\right|+2\ge2\forall x\)
Suy ra : \(\left|x-2\right|+2\le\frac{4}{2}=2\forall x\)
Vậy \(D_{max}=2\) dấu "=" xảy ra khi |x - 2| + 2 = 2
<=> |x - 2| = 0
<=> x - 2 =0
<=> x = 2
a)\(Q=1010-|3-x|\)
Để Q có giá trị lớn nhất \(\Leftrightarrow|3-x|\)là số nguyên dương nhỏ nhất có thể =>\(|3-x|=1\)\(\Leftrightarrow3-x=1\Leftrightarrow x=2\)
@_@
a, A = |x + 19| + |y - 5| + 1890
Xét có |x + 19| ≥ 0 ( dấu bằng xảy ra khi x = -19)
Và |y - 5| ≥ 0 (dấu bằng xảy ra khi y = 5)
Do đó A ≥ 1890
Vậy Min A = 1890 tại x = -19 và y = 5
b, B = -|x - 7| - |y +13| +1945
Nên B = - ( |x - 7| + |y + 13|) +1945
Xét có |x - 7| + |y + 13| ≥ 0 ( dấu bằng xảy ra khi x = 7 và y = -13)
Nên B ≤ 1945
Vậy Max B = 1945 tại x = 7 và y = -13
Thanks