K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

a, A = |x + 19| + |y - 5| + 1890

Xét có |x + 19| ≥ 0 ( dấu bằng xảy ra khi x = -19)

Và |y - 5| ≥ 0 (dấu bằng xảy ra khi y = 5)

Do đó A ≥ 1890

Vậy Min A = 1890 tại x = -19 và y = 5

b, B = -|x - 7| - |y +13| +1945

Nên B = - ( |x - 7| + |y + 13|) +1945

Xét có |x - 7| + |y + 13| ≥ 0 ( dấu bằng xảy ra khi x = 7 và y = -13)

Nên B ≤ 1945

Vậy Max B = 1945 tại x = 7 và y = -13

16 tháng 3 2020

Thanks

6 tháng 2 2021

a, Ta có : \(\left|x+19\right|\ge0\forall x;\left|y-5\right|\ge0\forall y\)

\(\Rightarrow A\ge1890\)Dấu ''='' xảy ra <=> x = -19 ; y = 5 

Vậy GTNN A là 1890 <=> x = -19 ; y = 5 

6 tháng 2 2021

b, Ta có : \(-\left(\left|x-7\right|+\left|y+13\right|\right)+1945\le1945\)

hay \(\Rightarrow B\le1945\)

vì \(\left|x-7\right|\ge0\forall x;\left|y+13\right|\ge0\forall y\)

Dấu''='' xảy ra <=> x = 7 ; y = -13

Vậy GTLN B là 1945 <=> x = 7 ; y = -13

14 tháng 2 2020

a) A=|x+19|+|y-5|+1890

Để A nhỏ nhất thì |x +19| và |y -5| nhỏ nhất
Ta thấy |x +19| và |y -5| ≥ 0 (với ∀ x,y) ⇒ |x +19| + |y -5| + 1890 ≥ 1890
Dấu "=" xảy ra khi x = -19 và y = 5

Vậy GTNN của A là 1890 tại x= -19 và y= 5

 b) B=-|x-7| - |y+13|+1945

Ta thấy: -|x-7| và -|y-5| ≤ 0 (với ∀ x,y) ⇒ -|x-7| - |y+13|+1945 ≤ 1945

Dấu "=" xảy ra khi x= 7 và y= 5

Vậy GTLN của B là 1945 tại x= 7 và y= 5

hert

14 tháng 2 2020

a) Tìm giá trị nhỏ nhất của biểu thức:

A= |x+19|+ |y – 5| + 1890

Vì |x+19| lớn hơn hoặc bằng 0 với mọi x

=> A có GTNN <=> |x+19| nhỏ nhất

=> |x+19| = 0

      x+19 = 0

      x       = 0 - 19

      x       = -19

Vì |y – 5| lớn hơn hoặc bằng 0 với mọi x

=> A có GTNN <=> |y – 5| nhỏ nhất

=> |y – 5| = 0

      y – 5  = 0

      y        = 0 + 5

      y        = 5

A= |x+19|+ |y – 5| + 1890

Thay số:

A= |(-19)+19|+ |5 – 5| + 1890

A= |0|+ |0| + 1890

A= 0 + 0 +1890

A = 1890

Vậy GTNN của A là 1890 <=> x = -19

                                                 y = 5

23 tháng 1 2020

a) \(A=\left|x+19\right|+\left|y-5\right|+1890\)

TA có: \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge}0;\forall x,y\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

Vậy \(A_{min}=1890\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b) \(B=-\left|x-7\right|-\left|y+13\right|+1945\)

Ta có: \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy MAX\(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

9 tháng 1 2017

A = \(\frac{1}{13}\).\(\frac{-39}{x-7}\)= - \(\frac{39}{13\left(x-7\right)}\)= -\(\frac{3}{x-7}\)

A nhỏ nhất khi x - 7 =  3 => x = 10

A lơn nhất khi x - 7 = -3 => x = 4

9 tháng 1 2017

thanks very much

Barack Obama

27 tháng 3 2018

do (x+2)2>=0 với mọi x ; (y-2)2>=0 mọi y => (x+2)-(y-2)2>=0 mọi x,y => 4 -(x+2)2-(y-2)2>=4 với mọi x, y

dấu = xảy <=> x+2=0                       

                                       =>x=-2 ; y=2

                       y-2=0

27 tháng 3 2018

Với x= - 2;y= 2 thì giá trị lớn nhất của biểu thức là A=4

9 tháng 3 2020

Ta có \(|x-5|\ge0;\forall x\Rightarrow|x-5|+25\ge25;\forall x\Rightarrow A\ge25,\forall x\)

GTNN của A là 25 khi và chỉ khi x=5

\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2-16\ge-16;\forall x\Rightarrow B\ge-16,\forall x\)

GTNN của B là -16 khi x=2

b) \(|x+3|\ge0;\forall x\Rightarrow-|x+3|-5\le-5;\forall x\Rightarrow C\le-5,\forall x\)

GTLN của C là -5 khi và chỉ khi x=-3

\(\left(x+1\right)^2\ge0;\forall x\Rightarrow-\left(x+1\right)^2\le0;\forall x\Rightarrow D\le14,\forall x\)

GTLN của D là 14 khi và chỉ khi x = -1

9 tháng 3 2020

a, Tìm giá trị nhỏ nhất của biểu thức:

A = \(|x-5|+25\)

Để A nhỏ nhất \(\Rightarrow\)\(|x-5|+25\)nhỏ nhất 

\(\Rightarrow\)\(|x-5|\)nhỏ nhất 

Mà  \(|x-5|\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\) \(|x-5|\)\(=0\)                                (1)

Thay (1) vào A, ta có:

A = 0 + 25

A = 25

Vậy giá trị nhỏ nhất của A là 25

\(B=-16+\left(x-2\right)^2\)

Để B nhỏ nhất \(\Rightarrow\)\(-16+\left(x-2\right)^2\)nhỏ nhất

\(\Rightarrow\left(x-2\right)^2\)nhỏ nhất

Mà \(\left(x-2\right)^2\)\(\ge0\forall x\inℤ\)

\(\Rightarrow\left(x-2\right)^2\)\(=0\)                                   (2)

Thay (2) vào B, ta có :

B =  \(-16+0\)

B = \(-16\)

Vậy giá trị nhỏ nhất của B là -16

16 tháng 7 2021

Áp dụng tính chất :`|P|>=P,|P|>=-P`

`=>{(|x-2019|>=x-2019),(|x-2021|>=2021-x):}`

`=>A>=x-2019+2021-x=2`

Dấu "=" xảy ra khi `{(x-2019>=0),(2021-x<=0):}`

`<=>{(x>=2019),(x<=2021):}`

`<=>2019<=x<=2021`

5 tháng 8 2018

Ta có :  A = | x - 3 | + 10 > 0

           Vì  | x - 3 |\(\ge\)0

Dấu = Xảy ra <=> x = 3

Vậy gtnn của A = 10 <=> x = 3

5 tháng 8 2018

Vì \(\left|x-3\right|\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left|x-3\right|+10\ge10\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-3\right|=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin =10 khi và chỉ khi x = 3

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow B=-7+\left(x-1\right)^2\ge-7\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmin = -7 khi và chỉ khi x = 1

Vì \(\left|x-2\right|\ge0\left(\forall x\right)\Rightarrow C=-3-\left|x-2\right|\le-3\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-2\right|=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Cmax = -3 khi và chỉ khi x = 2

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow15-\left(x-2\right)^2\le15\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy Dmax = 15 khi và chỉ khi x = 2