Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-7x^2+10x-2016=-7\left(x^2-\frac{10x}{7}\right)-2016=-7\left(x^2-2.x.\frac{5}{7}+\frac{25}{49}\right)+\frac{25}{49}.7-2016=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)Vậy Max = \(-\frac{14087}{7}\Leftrightarrow x=\frac{5}{7}\)
b) \(\frac{x+5}{11}+\frac{x+2010}{6}\ge\frac{x-1}{2017}+\frac{x+6}{2010}\)
\(\Leftrightarrow\frac{x}{2011}+\frac{x}{6}+\frac{5}{2011}+335\ge\frac{x}{2017}+\frac{x}{2010}-\frac{1}{2017}+\frac{1}{335}\)
\(\Leftrightarrow x\left(\frac{1}{2011}+\frac{1}{6}-\frac{1}{2017}-\frac{1}{2010}\right)\ge\frac{1}{335}-\frac{1}{2017}-\frac{5}{2011}-335\)
\(\Leftrightarrow\frac{677389259}{4076467935}x\ge\frac{-455205582048}{1358822645}\) \(\Leftrightarrow x\ge-2016\)
Câu b) còn cách khác nữa bạn nhé. Mình làm cách này "xù" quá ^^
\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)
\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0
\(\Leftrightarrow x=2013\)
Vậy ........
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
Phương trình đã cho tương đương với :
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Tìm x theo như toán lớp 6 nha
\(x-2013=0\)
\(\Leftrightarrow\)\(x=2013\)
ta có pt
<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
^_^
\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)
\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=2014\)
Lời giải:
Tập xác định của phương trình
Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau
Lời giải thu được
\(\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}=\frac{x}{1008}+\frac{x-2}{1009}+\frac{x+1}{2015}\)
\(\Leftrightarrow\frac{x+2012}{2}+\frac{x+2010}{3}+\frac{x+2011}{5}-\frac{x}{1008}-\frac{x-2}{1009}-\frac{x+1}{2015}=0\)
\(\Leftrightarrow\frac{x+2012}{2}+2+\frac{x+2010}{3}+2+\frac{x+2011}{5}+1-\frac{x}{1008}-2-\frac{x-2}{1009}-2-\frac{x+1}{2015}-1=0\)
\(\Leftrightarrow\frac{x+2016}{2}+\frac{x+2016}{3}+\frac{x+2016}{5}-\frac{x+2016}{1008}-\frac{x+2016}{1009}-\frac{x+2016}{2015}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\right)=0\)
Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}-\frac{1}{1008}-\frac{1}{1009}-\frac{1}{2015}\ne0\)
\(\Leftrightarrow x+2016=0\)
\(\Leftrightarrow x=-2016\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2016\right\}\)
a) \(=-7\left(x^2-\frac{10}{7}x+\frac{2016}{7}\right)\)
\(=-7\left(x^2-2.\frac{5}{7}x+\frac{25}{49}+\frac{14087}{49}\right)\)
\(=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\)
ta có
\(\left(x-\frac{5}{7}\right)^2\ge0\)với mọi x
\(=>-7\left(x-\frac{5}{7}\right)^2\le0\)(nhân cả hai vế với -7)
\(=>-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)
trường hợp dấu "=" xảy ra khi và chỉ khi
\(\left(x-\frac{5}{7}\right)^2=0\)
\(=>x-\frac{5}{7}=0\)
\(=>x=\frac{5}{7}\)
vậy GTLN cảu biểu thức là \(-\frac{14087}{7}\) khi và chỉ khi x= \(\frac{5}{7}\)