\(1\Delta\) . Biết các góc tỉ lệ với 2;3;4

b) Cho

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

a) Gọi số đo của các goác lần lượt là x,y,z

Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=180\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)

=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)

21 tháng 10 2016

vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180

áp dụng gì đó ko nhớ có

a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=> a/2=20 nên a=40cm

b/3=20 nên b=60cm

c/4=20 nên c=80cm

vậy 3 cạnh là 40cm,60cm và 80cm

3 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)

\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

TH1 : \(a+b=0\Leftrightarrow a=-b\)

\(M=\left(-b^{15}+b^{15}\right)\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)\)

\(M=0\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)=0\)

TH2 : \(b+c=0\Leftrightarrow b=-c\)

Đến đây tịt :) bác nào biết giải tiếp giúp Nghị Hồng Vân Anh

5 tháng 4 2019

đề cho a,b trái dấu rồi nên có một trường hợp thôi nha Trần Thanh Phương, cảm ơn bạn

6 tháng 12 2017

Ta có: a3 + b3 + c3 = 3abc 

  \(\Leftrightarrow\)a3 + b3 + c3 - 3abc = 0

  \(\Leftrightarrow\)(a + b)3 + c3 - 3ab2 - 3a2b - 3abc = 0

  \(\Leftrightarrow\)(a + b + c)[(a + b)2 - c(a + b) + c2 ] - 3ab(a + b + c) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0

  \(\Leftrightarrow\)(a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

Vì a + b + c khác 0 nên

    a2 + b2 + c2 - ab - bc - ca = 0

\(\Leftrightarrow\)2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

\(\Leftrightarrow\)(a - b)2 + (b - c)2 + (c - a)2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)\(\Leftrightarrow\)a = b = c 

 N = \(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)= 1

14 tháng 12 2016

Ta có

\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)

\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)

Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)

Dấu = xảy ra khi x = y = z = 0

Với x = y = z = 0 thì

\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)

\(\Leftrightarrow0=0\)(đúng)

\(\Rightarrow\)ĐPCM

16 tháng 7 2016

a) Ta có : \(-\left|x\right|\le0\Leftrightarrow-\left|x\right|+2016\le2016\Leftrightarrow\frac{1}{2016-\left|x\right|}\ge\frac{1}{2016}\Leftrightarrow\frac{-6}{2016-\left|x\right|}\le-\frac{6}{2016}=-\frac{1}{336}\)

Dấu "=" xảy ra khi x = 0

Max A = \(-\frac{1}{336}\Leftrightarrow x=0\)

16 tháng 7 2016

b) tương tự

11 tháng 4 2017

Ta có:

f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)

tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)

từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )

Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì 

=> A=-1.1007-1-0,5=-1008,5

11 tháng 4 2017

Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-cb\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-cb-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-cb\right)=0\)

Vi a,b,c khác 0 Nên : \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=> a = b = c

Vậy \(N=\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}=\frac{a^{2016}+a^{2016}+a^{2016}}{\left(a+a+a\right)^{2016}}=\frac{3.a^{2016}}{3^{2016}.a^{2016}}=\frac{1}{3^{2015}}\)

11 tháng 2 2018

cảm ơn so tài kết thúc

10 tháng 8 2016

tìm x y z biết

\(\sqrt{2016.x^2+4}+\sqrt{2017y^2+9}=9-\sqrt{2019z^2+25}\)

đăng bài này nè