Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
\(BCNN\left(a,b\right)=3.UCLN\left(a,b\right).Taco:a.b=BCNN\left(a,b\right).UCLN\left(a,b\right)=1200\)
\(\Rightarrow UCLN\left(a,b\right).UCLN\left(a,b\right)=1200:3=400\Rightarrow UCLN\left(a,b\right)=20\)
\(Đặt:a=20a`;b=20b`.\Rightarrow a`b`=1200:400=3=1.3=3.1\Rightarrow a`;b`\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
\(\Rightarrow a,b\in\left\{\left(20;60\right);\left(60;20\right)\right\}\)
Ta có : \(\left|3-x\right|=x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=x-5\\x-3=5-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=-5+3\\x+x=5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-2\left(loại\right)\\2x=8\end{cases}}\)
=> x = 4
có ai lm đc ko