\(\sqrt{\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}} \): <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

\(A=\sqrt{\dfrac{2\sqrt{10}+\sqrt{30}-2\sqrt{2}-\sqrt{6}}{2\sqrt{10}-2\sqrt{2}}}:\dfrac{2}{\sqrt{3}-1}\)

\(=\sqrt{\dfrac{\sqrt{10}\left(2+\sqrt{3}\right)-\sqrt{2}\left(2+\sqrt{3}\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}}.\dfrac{\sqrt{3}-1}{2}\)

\(=\sqrt{\dfrac{\left(2+\sqrt{3}\right)\sqrt{2}\left(\sqrt{5}-1\right)}{2\sqrt{2}\left(\sqrt{5}-1\right)}}.\dfrac{\sqrt{3}-1}{2}\)

\(=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{4}\)

\(=\dfrac{2\sqrt{3}-2+3-\sqrt{3}}{4}\)

\(=\dfrac{1+\sqrt{3}}{4}\)

24 tháng 6 2018

chết mình làm sai rồi, cho mình sửa lại

4 tháng 7 2019

b1. a)

Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10

=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102

2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10

5 + 2 căn 6 lớn hơn hoặc bằng 10

2 căn 6 lớn hơn hoặc bằng 5

( 2 căn 6 )2 lớn hơn hoặc bằng 52

4 * 6 lớn hơn 25

24 lớn hơn hoặc bằng 25 (sai)

Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10

Bài 1: Tính

a) Ta có: \(\left(\sqrt{3}+2\right)^2\)

\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)

\(=3+4\sqrt{3}+4\)

\(=7+4\sqrt{3}\)

b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)

\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)

\(=-\left(2-2\sqrt{2}+1\right)\)

\(=-\left(3-2\sqrt{2}\right)\)

\(=2\sqrt{2}-3\)

Bài 2: Tính

a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)

\(=\frac{1}{2}\cdot10-\frac{5}{2}\)

\(=5-\frac{5}{2}\)

\(=\frac{5}{2}\)

b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)

\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)

\(=\frac{2}{4}\cdot\frac{1}{5}\)

\(=\frac{1}{10}\)

Bài 3: So sánh

a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\)(Vì 18>12)

nên \(3\sqrt{2}>2\sqrt{3}\)

\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)

\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)

\(=225-60\sqrt{10}+40\)

\(=265-60\sqrt{10}\)

\(=135+130-60\sqrt{10}\)

Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)

Ta có: \(130-60\sqrt{10}\)

\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)

\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)

\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)

\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)

\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)

hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

9 tháng 9 2020

phần a của 3 bài đều easy mà cả 3 bài đều easy

NV
5 tháng 6 2019

ĐKXĐ:...

\(A=\left(\frac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+2\right)}-\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a}+1}\right).\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}=\frac{1}{a}\)

\(C=\left(\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=\left(\frac{\left(\sqrt{x}+1\right)}{-\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)}.\frac{\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)}\)

\(=\left(-1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\right).\sqrt{x}=\left(\frac{-x-\sqrt{x}-1+x+\sqrt{x}}{x+\sqrt{x}+1}\right)\sqrt{x}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)

\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)

Do đó:

\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

13 tháng 8 2020

Giúp e câu a nữa ạ