\(\sqrt{21+6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)

b.

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(A=\sqrt{19-3\sqrt{40}}-\sqrt{19+3\sqrt{40}}=\sqrt{19-2\sqrt{90}}-\sqrt{19+2\sqrt{90}}=\sqrt{10-2.\sqrt{10}.3+9}-\sqrt{10+2.\sqrt{10}.3+9}=\sqrt{\left(\sqrt{10}-3\right)^2}-\sqrt{\left(\sqrt{10}+3\right)^2}=\sqrt{10}-3-\sqrt{10}-3=-6\)\(B=\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}=\sqrt{18-2.\sqrt{18}.\sqrt{3}+3}+\sqrt{6+2.\sqrt{3}.\sqrt{6}+3}-\sqrt{24+12\sqrt{3}}=\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{\sqrt{3}}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}=\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}=0\)

Y
4 tháng 7 2019

\(C=\sqrt{6+2\sqrt{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}}\)

\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)

\(C=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\) \(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\) \(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(D=\sqrt{\frac{8+2\sqrt{15}}{2}}-\sqrt{\frac{14-6\sqrt{5}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}\)

\(=\frac{\sqrt{5}+\sqrt{3}-3+\sqrt{5}}{\sqrt{2}}=\frac{2\sqrt{10}+\sqrt{6}-3\sqrt{2}}{2}\)

\(E=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\) \(=\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}\)

\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

\(F=\sqrt{\frac{24-6\sqrt{7}}{2}}-\sqrt{\frac{24+6\sqrt{7}}{2}}\) \(=\sqrt{\frac{21-2\sqrt{21\cdot3}+3}{2}}-\sqrt{\frac{21+2\sqrt{21\cdot3}+3}{2}}\)

\(=\sqrt{\frac{\left(\sqrt{21}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{\left(\sqrt{21}+\sqrt{3}\right)^2}{2}}\)

\(=\frac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=\frac{-2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

\(G=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\) \(=\left(3+\sqrt{3}\right)\cdot\sqrt{\left(3-\sqrt{3}\right)^2}\)

\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)

\(H=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(3-\sqrt{5}\right)^2}\) \(=\sqrt{5}-2-3-\sqrt{5}=-5\)

\(I=\sqrt{\left(2\sqrt{2}-1\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=2\sqrt{2}-1-2\sqrt{3}+1=2\sqrt{2}-2\sqrt{3}\)

1: \(=\sqrt{36}=6\)

2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)

3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)

4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)

31 tháng 7 2017

https://hoc24.vn/hoi-dap/question/407636.html

\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)

\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)

\(=\sqrt{4+5}\)

= 9

~ ~ ~ ~ ~

\(M=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\sqrt{3}+1\)

31 tháng 7 2017

\(M=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

= 1

28 tháng 6 2019

a)(\(\sqrt{2006}-\sqrt{2005}\)).(\(\sqrt{2006}+\sqrt{2005}\))

=\(\sqrt{2006}^2-\sqrt{2005}^2\)

=2006-2005

=1

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

2.1

\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)

2.2

\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)

\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)

\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)

$\Rightarrow B=\sqrt{2}$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 1:

1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)

2.

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)

NV
16 tháng 9 2019

1/\(\sqrt{8-2\sqrt{15}}-\sqrt{21-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(2\sqrt{5}-1\right)^2}\)

Bạn tự làm tiếp

2/ \(\frac{4}{\sqrt{7-4\sqrt{3}}}-\frac{4}{7-4\sqrt{3}}=\frac{4}{\sqrt{\left(2-\sqrt{3}\right)^2}}-\frac{4}{\left(2-\sqrt{3}\right)^2}=\frac{4}{2-\sqrt{3}}-\frac{4}{\left(2-\sqrt{3}\right)^2}\)

\(=\frac{8-4\sqrt{3}-4}{\left(2-\sqrt{3}\right)^2}=\frac{4-4\sqrt{3}}{\left(2-\sqrt{3}\right)^2}\) đến đây ko rút gọn được nữa, nghi bạn chép sai đề.

Tử số của phân số thứ hai là 4 hay 1 vậy?

3/ \(\frac{\sqrt{8+2\sqrt{15}}-\sqrt{4-2\sqrt{3}}}{\sqrt{6-2\sqrt{5}}}=\frac{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{3+\sqrt{5}}{2}\)

4/ \(\frac{10}{\sqrt{\left(\sqrt{5}-2\right)^2}}-\frac{12}{\sqrt{\left(3+\sqrt{5}\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{3+\sqrt{5}}+\frac{20}{\sqrt{5}-1}\)

\(=\frac{10\left(\sqrt{5}+2\right)}{1}-\frac{12\left(3-\sqrt{5}\right)}{4}+\frac{20\left(\sqrt{5}+1\right)}{4}=16+18\sqrt{5}\)

17 tháng 3 2020

\(\frac{10}{\sqrt{5}-2.\sqrt{5}.2+4}-\frac{12}{\sqrt{\sqrt{5}+2.\sqrt{5}.3+9}}+\frac{20}{\sqrt{5-2.\sqrt{5}.1+1}}=\frac{10}{\left(\sqrt{5}-2\right)^2}-\frac{12}{\sqrt{\left(\sqrt{5}+3\right)^2}}+\frac{20}{\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{10}{\sqrt{5}-2}-\frac{12}{\sqrt{5}+3}+\frac{20}{\sqrt{5}-1}=\frac{10\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right).\left(\sqrt{5}+2\right)}-\frac{12.\left(\sqrt{5}-3\right)}{\left(\sqrt{5}+3\right).\sqrt{5}-3\left(\right)}+\frac{20.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\frac{10\sqrt{5}-20}{5-4}-\frac{12\sqrt{5}-36}{5-9}+\frac{20\sqrt{5}+20}{5-1}\\=\frac{40\sqrt{5}-80+12\sqrt{5}+36+20\sqrt{5}+20}{4}=\\ 18\sqrt{5}-6\)