\(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

Tính A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

\(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(A=\dfrac{\sqrt{2}\cdot\left(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\right)}{\sqrt{2}}\)

\(A=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{12+6\sqrt{7}}}{\sqrt{\text{2}}}\)

\(A=\dfrac{\sqrt{21-2\cdot\sqrt{21}\cdot\sqrt{3}+3}-\sqrt{21+2\cdot\sqrt{21}\cdot\sqrt{3}+3}}{\sqrt{2}}\)

\(A=\dfrac{\sqrt{\left(\sqrt{21}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}+\sqrt{3}\right)^2}}{\sqrt{2}}\)

\(A=\dfrac{\left|\sqrt{21}-\sqrt{3}\right|-\left|\sqrt{21}+\sqrt{3}\right|}{\sqrt{2}}\)

\(A=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{\text{2}}}\)

\(A=\dfrac{-\sqrt{6}}{\sqrt{2}}\)

\(A=-\sqrt{\dfrac{6}{2}}\)

\(A=-\sqrt{3}\)

19 tháng 9 2023

\(A=\sqrt[]{12-3\sqrt[]{7}}-\sqrt[]{12+3\sqrt[]{7}}\)

Giả sử \(\sqrt[]{12-3\sqrt[]{7}}-\sqrt[]{12+3\sqrt[]{7}}>0\)

\(\Leftrightarrow\sqrt[]{12-3\sqrt[]{7}}>\sqrt[]{12+3\sqrt[]{7}}\)

\(\Leftrightarrow12-3\sqrt[]{7}>12+3\sqrt[]{7}\)

\(\Leftrightarrow6\sqrt[]{7}< 0\left(sai\right)\)

Vậy \(\sqrt[]{12-3\sqrt[]{7}}-\sqrt[]{12+3\sqrt[]{7}}< 0\) hay \(A< 0\)

\(\Leftrightarrow A^2=12-3\sqrt[]{7}+12+3\sqrt[]{7}-2\sqrt[]{\left(12-3\sqrt[]{7}\right)\left(12+3\sqrt[]{7}\right)}\)

\(\Leftrightarrow A^2=24-2\sqrt[]{\left(144-63\right)}\)

\(\Leftrightarrow A^2=24-2\sqrt[]{81}\)

\(\Leftrightarrow A^2=24-18=6\)

\(\Leftrightarrow A=-\sqrt[]{6}\)

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

19 tháng 10 2016

a, =\(9\sqrt{2}\)

b, =21

21 tháng 9 2018

a) \(=9\sqrt{2}\)

b) \(=21\)

học tốt.

3 tháng 8 2017

a) A=12\(\sqrt{3}\)

    B= \(\frac{8}{3}\)

c) C= 1

d)...

Chúc bạn học tốt nha ^^!

12 tháng 7 2018

\(1a.2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{548}=2\sqrt{16.5\sqrt{3}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=8\sqrt{\sqrt{75}}-2\sqrt{\sqrt{75}}-6\sqrt{137}=6\sqrt{\sqrt{75}}-6\sqrt{137}\) \(b.\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right).\dfrac{1}{\sqrt{15}}=10\sqrt{3}.\dfrac{1}{\sqrt{3}.\sqrt{5}}=2\sqrt{5}\) \(d.\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}=\left(60\sqrt{2}-80\sqrt{2}+105\sqrt{2}\right).\dfrac{1}{\sqrt{10}}=85\sqrt{2}.\dfrac{1}{\sqrt{2}.\sqrt{5}}=17\sqrt{5}\) \(e.\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right):\sqrt{7}=\left(\sqrt{\dfrac{1}{7}}-4\sqrt{\dfrac{1}{7}}+3\sqrt{\dfrac{1}{7}}\right).\dfrac{1}{\sqrt{7}}=0\) \(2a.A=\sqrt{3+\sqrt{5+2\sqrt{3}}}.\sqrt{3-\sqrt{5+2\sqrt{3}}}=\sqrt{9-5-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\) \(b.B=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}=\sqrt{2}.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}=\sqrt{2}.\sqrt{4-2}=2\)

b: \(=\dfrac{\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{3}-1-\sqrt{3}-1}{\sqrt{2}}=-\sqrt{2}\)

c: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)

d: \(=\dfrac{\sqrt{18-2\sqrt{17}}-\sqrt{18+2\sqrt{17}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{17}-1-\sqrt{17}-1}{\sqrt{2}}=-\sqrt{2}\)

6 tháng 10 2020
https://i.imgur.com/x0FcpLC.jpg
18 tháng 8 2016

a/ Đề sai

b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)

\(=-11\sqrt{5}+3\sqrt{2}\)

c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)

\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)

d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)

 

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

3 tháng 9 2019

c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=A\\ \Rightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}+}\sqrt{6-\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\\ \Rightarrow A=\sqrt{2}.\sqrt{5}=\sqrt{10}\)