\(25^{70}va2^{300}\)

b, chung minh \(2003^{2000}-20...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).

5 tháng 11 2016

a) 56

b) 20

c) khó quá mình ko biết

nho k minh nhe

8 tháng 7 2015

giải như tiểu thiên thiên cũng giải

27 tháng 6 2017

\(B=4+4^2+4^3+.....+4^{2016}\)

\(4B=4\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(4B=4^2+4^3+4^4+.....+4^{2017}\)

\(4B-B=\left(4^2+4^3+4^4+......+4^{2017}\right)-\left(4+4^2+4^3+.....+4^{2016}\right)\)

\(3B=4^{2017}-4\)

\(B=\dfrac{4^{2017}-4}{3}\)

12 tháng 10 2016

+ Với n=1 \(\Rightarrow9^1-1=8\) chia hết cho 8

+ Giả sử với n=k thì \(9^k-1\) cũng chia hết cho 8

+ Ta phải chức minh với n=k+1 thì \(9^n-1\) cũng chia hết cho 8

\(9^n-1=9^{k+1}-1=9.9^k-1=9.9^k-9=8=9\left(9^k-1\right)+8\)

Ta có \(9^k-1\) chia hết cho 8 \(\Rightarrow9\left(9^k-1\right)\)chia hết cho 8; 8 chia hết cho 8

=> \(9^{k+1}-1\) chia hết cho 8

Kết luận \(9^n-1\) chia hết cho 8 với \(n\in N\)