K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2023

a: \(cos70=sin20\)

20<25

=>\(sin20< sin25\)

=>\(cos70< sin25\)

b: \(\dfrac{sin50}{cos40}=\dfrac{cos\left(90-50\right)}{cos40}=\dfrac{cos40}{cos40}=1\)

29 tháng 10 2023

a) Ta có: 

\(cos70^o=sin\left(90^o-70^o\right)=sin20^o\)

Ta so sánh \(sin25^o\) và \(sin20^o\)

\(25^o>20^o\Rightarrow sin25^o>sin20^o\)

\(\Rightarrow sin25^o>cos70^o\)

b) \(\dfrac{sin50^o}{cos40^o}\)

Ta có: 

\(cos40^o=sin\left(90^o-40^o\right)=sin50^o\)

\(\Rightarrow\dfrac{sin50^o}{cos40^o}=\dfrac{sin50^o}{sin50^o}=1\)

25 tháng 10 2023

a: \(cos32=sin58;cos53=sin37;cos8=sin82\)

18<37<44<58<82

=>\(sin18< sin37< sin44< sin58< sin82\)

=>\(sin18< cos53< sin44< cos32< cos8\)

b: 20<45

=>\(sin20< tan20\)

\(cot8=tan82;cot37=tan53\)

20<40<53<82

=>\(tan20< tan40< tan53< tan82\)

=>\(tan20< tan40< cot37< cot8\)

=>\(sin20< tan20< tan40< cot37< cot8\)

19 tháng 11 2021

d

19 tháng 11 2021

D

21 tháng 8 2020

a) tan 19 

cot 40 = tan 50 

Vì 19 < 50 

Nên tan 19 < tan 50 

Vậy tan 19 < cot 40 

b) sin 36 

cos 71 = sin 19 

Vì 36 > 19 

Nên sin 36 > sin 19 

Vậy sin 36 > cos 71

NV
26 tháng 7 2021

\(A=sin42^0-cos48^0=cos\left(90^0-42^0\right)-cos48^0=cos48^0-cos48^0=0\)

\(B=cot56^0-tan34^0=tan\left(90^0-56^0\right)-tan34^0=tan34^0-tan34^0=0\)

\(C=sin30^0-cot50^0-cos60^0+tan40^0\)

\(=cos\left(90^0-30^0\right)-tan\left(90^0-50^0\right)-cos60^0+tan40^0\)

\(=cos60^0-tan40^0-cos60^0+tan40^0=0\)

\(A=\sin42^0-\cos48^0=\sin42^0-\sin42^0=0\)

\(B=\cot56^0-\tan34^0=\tan34^0-\tan34^0=0\)

 

14 tháng 3 2019

a) Vì 20 °   <   70 °   n ê n   sin   20 °   <   sin 70 °  (góc tăng, sin tăng)

b) Vì 25 °   <   63 ° 15 '   n ê n   cos 25 °   >   cos   63 ° 15 ' (góc tăng, cos giảm)

c) Vì 73 ° 20 '   >   45 °   n ê n   t g 73 ° 20 '   >   t g 45 °  (góc tăng, tg tăng)

d) Vì 2 °   <   37 ° 40 '   n ê n   c o t g   2 °   >   c o t g   37 ° 40 '  (góc tăng, cotg giảm )

24 tháng 7 2017

1. Ta có \(\tan a=3\Rightarrow\frac{\sin a}{\cos a}=3\Rightarrow\sin a=3\cos a\)

Vậy \(\frac{\cos a+\sin a}{\cos a-\sin a}=\frac{\cos a+3\cos a}{\cos a-3\cos a}=\frac{4\cos a}{-2\cos a}=-2\)

2.Ta có \(\sin^2a+\cos^2a=1\Rightarrow\cos^2a=1-\sin^2a=1-\frac{4}{9}=\frac{5}{9}\)

\(\Rightarrow\orbr{\begin{cases}\cos a=\frac{\sqrt{5}}{3}\\\cos a=\frac{-\sqrt{5}}{3}\end{cases}}\)

Với \(\cos a=\frac{\sqrt{5}}{3}\Rightarrow\tan a=\frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}}=\frac{2\sqrt{5}}{5}\Rightarrow\cot a=\frac{1}{\tan a}=\frac{\sqrt{5}}{2}\)

Với \(\cos a=\frac{-\sqrt{5}}{2}\Rightarrow\tan a=\frac{-2\sqrt{5}}{5}\Rightarrow\cot a=-\frac{\sqrt{5}}{2}\)

3.  A B C H

Theo hệ thức  lượng trong tam giác vuông ta có \(AB^2=BH.BC\Leftrightarrow10^2=5.BC\Rightarrow BC=20\left(cm\right)\)

Theo định lí Pitago thì \(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)

Ta có \(\tan B=\frac{AC}{AB}=\frac{10\sqrt{3}}{10}=\sqrt{3};\tan C=\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)

Vậy \(\tan B=3\tan C\)