Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu C : Lần đầu làm dạng này :))
Xét hiệu A - 2 , ta có :
\(A-2=\frac{2\sqrt{a}+2-4a-2}{2a+1}=\frac{2\sqrt{a}-4a}{2a+1}=\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\)
Ta thấy :
+) Do \(a\ge0\)\(\Rightarrow2\sqrt{a}\left(1-2\sqrt{a}\right)\le0\)
+) a khác 1 ; \(a\ge0\)=> 2a + 1 > 0
\(\Rightarrow\frac{2\sqrt{a}\left(1-2\sqrt{a}\right)}{2a+1}\le0\)
\(\Leftrightarrow A< 2\)
P/s : sai bỏ qua :))
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}+\frac{\sqrt{a}}{1-a}\right)\)
ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
\(A=\left(\frac{\sqrt{a}+1+1-\sqrt{a}}{\sqrt{a}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\left(\frac{a+2\sqrt{a}+1+a-\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{2}{\sqrt{a}-1}\div\frac{2a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(A=\frac{2}{\sqrt{a}-1}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{2a+1}\)
\(A=\frac{2\left(\sqrt{a}+1\right)}{2a+1}\)
b) \(a=1-\frac{\sqrt{3}}{2}=\frac{2}{2}-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}\)( tmđk )
Rồi từ đây thế vô :)
c) Nhờ cao nhân làm tiếp chứ em mới lớp 8 thôi ạ :(
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\))
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\frac{5}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)
\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)
\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\))
\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))
Do đó \(A< \frac{1}{3}\).
ĐKXĐ : \(a>0,a\ne1\)
a) \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(B=1-\frac{1}{\sqrt{a}}< 1\)
\(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)
a)ĐK: \(a>0;a\ne1\)
\(B=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) \(B=\frac{\sqrt{a}-1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}< 1\)
a/
\(1995^n.1997^n=\left(1995.1997\right)^n\)
\(1996^{2n}=\left(1996^2\right)^n\)
\(1995.1997=\left(1996-1\right).\left(1996+1\right)=1996^2-1\)
\(\Rightarrow1995.1997< 1996^2\Rightarrow1995^n.1997^n< 1996^{2n}\)
b/
\(A=\frac{1}{2.9}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{9.20}+\frac{1}{9.30}+\frac{1}{9.42}+\frac{1}{9.56}\)
\(A=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)
\(A=\frac{1}{9}\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{8-7}{7.8}\right)\)
\(A=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=\frac{1}{9}\left(1-\frac{1}{9}\right)=\frac{1}{9}.\frac{8}{9}=\frac{8}{81}\)