Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em cần giúp câu nào hả em? Em nên chụp 1-2 ý cho 1 lần hỏi nhá, như thế mọi người sẽ dễ dàng giúp em hơn
13
a, \(3x-4=-x+8\)
\(< =>3x+x=8+4\)
\(< =>4x=12\)
\(< =>x=\frac{12}{4}=3\)
b, \(\frac{2x+1}{6}+\frac{x-7}{12}=10\)
\(< =>\frac{2\left(2x+1\right)}{12}+\frac{x-7}{12}=\frac{120}{12}\)
\(< =>4x+2+x-7=120\)
\(< =>5x=120+5=125\)
\(< =>x=\frac{125}{5}=\frac{5^3}{5}=5^2=25\)
3.(⅓x - ¼)² = ⅓
=> (\(\dfrac{1}{3x}\)- \(\dfrac{1}{4}\) )2 = \(\dfrac{1}{9}\)
=>\(\left[{}\begin{matrix}\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{-1}{3}\\\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\dfrac{1}{3x}=\dfrac{-1}{12}\\\dfrac{1}{3x}=\dfrac{7}{12}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-4\\x=\dfrac{12}{21}=\dfrac{4}{7}\end{matrix}\right.\)
Vậy, tập nghiệm x thỏa mãn là S=\(\left\{-4;\dfrac{4}{7}\right\}\)
a) x2 - 9 = 3( x - 3 )
⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0
⇔ ( x - 3 )( x + 3 - 3 ) = 0
⇔ ( x - 3 ).x = 0
⇔ x - 3 = 0 hoặc x = 0
⇔ x = 3 hoặc x = 0
b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )
⇔ 9x2 + 3 = 6 - 6x - 4
⇔ 9x2 + 6x + 3 - 6 + 4 = 0
⇔ 9x2 + 6x + 1 = 0
⇔ ( 3x + 1 )2 = 0
⇔ 3x + 1 = 0
⇔ x = -1/3
a: Xét tứ giác AECF có
AE//CF(AB//CD)
AE=CF
Do đó: AECF là hình bình hành
b: AE+EB=AB
CF+FD=CD
mà AE=CF và AB=CD
nên BE=DF
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
=>DE=BF
c:
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔAIC có
D,O lần lượt là trung điểm của AI,AC
=>DO là đường trung bình
=>DO//CI
d: AECF là hình bình hành
=>AC cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của EF
=>AC,EF,BD đồng quy(do cùng đi qua O)
a) \(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+10x+4}{x}\left(x\ne0;x\ne-2\right)\)
\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{\left(x+2\right)-x^2}{x+2}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{-x^2+x+2}{x+2}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)}{x}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-10x-4}{x}\)
\(Q=\dfrac{-x^3-2x^2-6x}{x}\)
\(Q=\dfrac{x\left(-x^2-2x-6\right)}{x}\)
\(Q=-x^2-2x-6\)
b) Ta có:
\(Q=-x^2-2x-6\)
\(Q=-\left(x^2+2x+6\right)\)
\(Q=-\left[\left(x^2+2x+1\right)+5\right]\)
\(Q=-\left(x+1\right)^2-5\)
Mà: \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow Q=-\left(x+1\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi:
\(x+1=0\Rightarrow x=-1\)
Vậy: \(Q_{max}=-5\Leftrightarrow x=-1\)