Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)
\(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)
\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)
\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa
a) \(ĐKXĐ:x>0;x\ne4\)
Ta có : \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{4x}{2\sqrt{x}-x}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}\right)\)
\(=\left[\frac{\sqrt{x}.\sqrt{x}-4x}{\sqrt{x}.\left(\sqrt{x}-2\right)}\right]\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
\(=\frac{-3x}{\sqrt{x}.\left(\sqrt{x}+3\right)}\)
b) Ta có : \(x-1=10-4\sqrt{6}=\left(\sqrt{6}-2\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{6}-2\right)^2+1}\)
......
\(P=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\) Đk \(x\ne0\)
\(=\frac{\sqrt{x^4-6x^2+9+12x^2}}{\sqrt{x^2}}+\sqrt{x^2+4x+4-8x}\)
\(=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}+\sqrt{x^2-4x+4}\)
\(=\frac{\sqrt{\left(x^2+3\right)^2}}{\sqrt{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\frac{x^2+3}{x}+x-2\)
\(=\frac{x^2+3+x\left(x-2\right)}{x}=\frac{x^2+3+x^2-2x}{x}\)
\(=\frac{2x^2-2x+3}{x}\)
b, \(P=\frac{2x^2-2x+3}{x}=2x-2+\frac{3}{x}\)
Để \(P\in z\)thì \(x\inƯ\left(3\right)=\left(-3;-1;1;3\right)\)
a)Do A chia hết cho 4 nên\(\dfrac{x^2}{x-1}\) \(\in\) Z
suy ra 1 chia hết cho x-1 suy x\(\in\) \(\left\{0;2\right\}\)
b)Do P thuộc Z nên 3 chia hết cho 2x+1
suy ra x\(\left\{-2;-1;0;1\right\}\)
\(B=\frac{1}{x}+\frac{2}{x+1}-\frac{1}{x^2+x}\) ( đkxđ : \(x\ne0;x\ne\pm1\))
<=> \(B=\frac{1}{x}+\frac{2}{x+1}-\frac{1}{x\left(x+1\right)}\)
<=> \(B=\frac{1\left(x+1\right)}{x\left(x+1\right)}+\frac{2x}{x\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
<=> \(B=\frac{1x+1+2x-1}{x\left(x+1\right)}\)
<=> \(B=\frac{3x}{x\left(x+1\right)}\)
4.a)\(x-2\sqrt{x}+3\)
\(=x-2\sqrt{x}+1+2\)
\(=\left(\sqrt{x}-1\right)^2+2\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0,\forall x\)
\(\left(\sqrt{x}-1\right)^2+2\ge2\)
\(\Rightarrow Min_{bt}=2\) khi \(\sqrt{x}-1=0\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
b)Ta có:
\(x-4\sqrt{y}+13\ge0\)
\(\Leftrightarrow x-4\sqrt{y}\ge-13\)
Dấu "=" xảy ra khi \(x-4\sqrt{y}=0\Leftrightarrow x=4\sqrt{y}\)
Vậy \(min_{bt}=0\) khi \(x=4\sqrt{y}\)
c)Ta có:
\(2x-4\sqrt{y}+6\ge0\)
\(\Leftrightarrow x-2\sqrt{y}+3\ge0\)
\(\Leftrightarrow x-2\sqrt{y}\ge-3\)
Dấu "=" xảy ra khi \(x-2\sqrt{y}=0\Leftrightarrow x=2\sqrt{y}\)
Vậy \(Min_{bt}=0\) khi \(x=2\sqrt{y}\)
d)Ta có:
\(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\)
Vì \(\left(x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow\left(x+1\right)^2+4\ge4\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2+4}\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{\left(x+1\right)^2+4}\ge-\frac{1}{4}\)
\(\Leftrightarrow-\frac{4}{\left(x+1\right)^2+4}\ge-1\)
Vậy \(Min_{bt}=-1\) khi \(x+1=0\Leftrightarrow x=-1\)
a, \(B=\dfrac{4x^3+8x^2-x-2}{4x^2+4x+1}\)
\(=\dfrac{4x^3+2x^2+6x^2+3x-4x-2}{\left(2x+1\right)^2}\)
\(=\dfrac{2x^2\left(2x+1\right)+3x\left(2x+1\right)-2\left(2x+1\right)}{\left(2x+1\right)^2}\)
\(=\dfrac{\left(2x^2+3x-2\right)\left(2x+1\right)}{\left(2x+1\right)}\)
\(=\dfrac{2x^2+3x-2}{2x+1}\)
b, Để \(B\in Z\Leftrightarrow2x^2+3x-2⋮2x+1\)
\(\Leftrightarrow2x^2+x+2x+1-3⋮2x+1\)
\(\Leftrightarrow x\left(2x+1\right)+\left(2x+1\right)-3⋮2x+1\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)-3⋮2x+1\)
\(\Leftrightarrow3⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{0;-1;1;-2\right\}\)
Vậy...