K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Từ Hình 1.19, ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đường tròn tại 2 điểm M, M’. Ta có nghiệm của phương trình là: \(\frac{\pi }{6}, - \frac{{5\pi }}{6}\)

b) Vì hàm số \(\sin x\) tuần hoàn với chu kỳ là \(2\pi \), ta có công thức nghiệm của phương trình là: \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \pi  - \frac{\pi }{6} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Từ Hình 1.20, ta thấy đường thẳng \(y = \frac{1}{2}\) cắt đường tròn tại 2 điểm M, M’. Ta có nghiệm của phương trình là: \(\frac{\pi }{6}, - \frac{{5\pi }}{6}\)

b) Vì hàm số \(\cos x\) tuần hoàn với chu kỳ là \(2\pi \), ta có công thức nghiệm của phương trình là: \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{6} + k2\pi }\\{x = \pi  - \frac{\pi }{6} + k2\pi }\end{array}\;\left( {k \in \mathbb{Z}} \right)} \right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Từ Hình 1.25, ta thấy đường thẳng \(y =  - 1\) cắt đồ thị hàm số \(y = \cot x\;\)tại 1 điểm \(x =  - \frac{\pi }{4} + \pi \) trên khoảng \(\left( {0;\pi } \right)\)

b) Ta có công thức nghiệm của phương trình là: \(x =  - \frac{\pi }{4} + \pi  + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Từ Hình 1.24, ta thấy đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = \tan x\;\)tại 1 điểm \(x = \frac{\pi }{4}\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\)

b) Ta có công thức nghiệm của phương trình là: \(x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

31 tháng 10 2023

a: Đường thẳng y=1 cắt đồ thị y=tanx tại một điểm duy nhất là \(\left(\dfrac{\Omega}{4};1\right)\)

b: \(tanx=1\)

=>\(x=\dfrac{\Omega}{4}+k\Omega\left(k\in Z\right)\)

NV
16 tháng 9 2021

\(0< \dfrac{1}{2018}< 1\)

Kẻ 1 đường thẳng nằm ngang nằm giữa \(y=0\) và \(y=1\) ta thấy cắt đồ thị tại 5 điểm trên đoạn đã cho

\(\Rightarrow\) Pt có 5 nghiệm

undefined

AH
Akai Haruma
Giáo viên
8 tháng 9 2021

Lời giải:
$2\cos ^22x+5\cos 2x-3=0$

$\Leftrightarrow (2\cos 2x-1)(\cos 2x+3)=0$

$\Leftrightarrow 2\cos 2x-1=0$ (chọn) hoặc $\cos 2x=-3$ (loại)

Vậy $2\cos 2x-1=0$

$\Leftrightarrow \cos 2x=\frac{1}{2}$

$\Rightarrow x=\frac{\pm \pi}{3}+2k\pi$ với $k$ nguyên 

Để nghiệm trong khoảng $(0;2\pi)$ thì $k=0$ với họ nghiệm $(1)$ và $k=1$ với họ nghiệm $(2)$

Vậy nghiệm của pt thỏa đề là:

$x=\frac{\pi}{3}; x=\frac{5}{3}\pi$

Tổng nghiệm: $\frac{\pi}{3}+\frac{5\pi}{3}=2\pi$

 

 

24 tháng 6 2019

\(\cos5x=-\sin4x\)

<=> \(\cos5x=\cos\left(4x+\frac{\pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}5x=4x+\frac{\pi}{2}+k2\pi\\5x=-4x-\frac{\pi}{2}+k2\pi\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}}\)

Nghiệm âm lớn nhất: \(-\frac{\pi}{18}\)

Nghiệm dương  nhỏ nhất: \(\frac{\pi}{2}\)

24 tháng 6 2019

pt <=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x-\frac{\pi}{3}+\frac{\pi}{2}\right)\)

<=> \(\sin\left(5x+\frac{\pi}{3}\right)=\sin\left(2x+\frac{\pi}{6}\right)\)

<=> \(\orbr{\begin{cases}5x+\frac{\pi}{3}=2x+\frac{\pi}{6}+k2\pi\\5x+\frac{\pi}{3}=\pi-2x-\frac{\pi}{6}+k2\pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{\pi}{18}+\frac{k2\pi}{3}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\end{cases}}\)

Trên \(\left[0,\pi\right]\)có các nghiệm:

\(\frac{11\pi}{18},\frac{\pi}{14},\frac{5\pi}{14},\frac{9\pi}{14},\frac{13\pi}{14}\)

tính tổng:...