Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Ta có \(x^3+3x-5=x^3+2x+x-5=\left(x^2+2\right)x+x-5\)
để giá trị của đa thức \(x^3+3x-5\)chia hết cho giá trị của đa thức \(x^2+2\)
thì \(x-5⋮x^2+2\Rightarrow\left(x-5\right)\left(x+5\right)⋮x^2+2\Rightarrow x^2-25⋮x^2+2\)
\(\Leftrightarrow x^2+2-27⋮x^2+2\Rightarrow27⋮x^2+2\)
\(\Leftrightarrow x^2+2\inƯ\left(27\right)\)do \(x^2+2\inℤ,\forall x\inℤ\)
mà \(x^2+2\ge2,\forall x\inℤ\)
\(\Rightarrow x^2+2\in\left\{3;9;27\right\}\)\(\Leftrightarrow x^2\in\left\{1;7;25\right\}\)
mà \(x^2\)là số chính phương \(\forall x\inℤ\)
\(\Rightarrow x^2\in\left\{1;25\right\}\Leftrightarrow x\in\left\{\pm1;\pm5\right\}\)
**bạn nhớ thử lại nhé
\(KL...\)
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)
Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3
=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}
b/ Chia F(x) cho x-1
\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)
Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại
\(A=x^3+9x^2+23x+15=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+8x+15\right)=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)
\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)⋮16\)
b, Nếu x là số chẵn thì A là số lẻ nên không chia hết cho 16
- Nếu x là số lẻ thì đặt x = 2k + 1 \(\left(k\in Z\right)\)
Ta có: \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)=\left(2k+1+1\right)\left(2k+1+3\right)\left(2k+1+5\right)\)
\(=\left(2k+2\right)\left(2k+4\right)\left(2k+6\right)=8\left(k+1\right)\left(k+2\right)\left(k+3\right)\)
Vì k + 1, k + 2 và k + 3 là 3 số nguyên liên tiếp nên
\(\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮2\Rightarrow A=8\left(k+1\right)\left(k+2\right)\left(k+3\right)⋮16\)
Vậy với x là số lẻ \(\left(x\in Z\right)\) thì \(A⋮16\)
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
a, \(x^4+2013x^2+2012x+2013\)
\(=x^4+2013x^2-x+2013x+2013\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left\{x\left(x-1\right)+2013\right\}\)
\(=\left(x^2+x+1\right)\left(x^2-x+2013\right)\)