K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

b: a+b+c<>0

A=(a+b+c)^3-a^3-b^3-c^3/a+b+c

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)/(a+b+c)

=a^2+b^2+c^2-ab-ac-bc

=1/2[a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2]

=1/2[(a-b)^2+(b-c)^2+(a-c)^2]>=0

21 tháng 3 2017

8 tháng 8 2019

a) 16(12 t 2  +1).

b) Gợi ý x 3   +   y 3 = ( x   +   y ) 3  - 3xy(x + y)

(x + y - z)( x 2   +   y 2   +   z 2  - xy + xz + yz).

a: =(x+y)^3+z^3-3xy(x+y)-3xyz

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)

\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)

=(x^2+x+5)(x^2+x-2)

=(x^2+x+5)(x+2)(x-1)

d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2

=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c

=b^2(c-a)+b(c^2-a^2)+ac(c-a)

=(c-a)(b^2+ac)+b(c-a)(c+a)

=(c-a)(b^2+ac+bc+ba)

=(c-a)[b^2+bc+ac+ab]

=(c-a)[b(b+c)+a(b+c)]

=(c-a)(b+c)(b+a)

11 tháng 12 2019

a) 12x.                           b) 4xy

c) 2y(3 x 2   +   y 2 ).

d) (x + y + z)( x 2   +   y 2   + z 2  – xy – xz - yz).

26 tháng 10 2021

1. Ta có: hằng đẳng thức: \(x^3+y^3+z^3=3xyz\) nếu x+y+z=0

đặt b-c=x, c-a=y, a-b=z⇒x+y+z=0

 \(\Rightarrow\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3=3\left(a-b\right)\left(c-a\right)\left(b-c\right)\)

2. \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

3. Tham khảo: https://hoc247.net/hoi-dap/toan-8/phan-tich-da-thuc-x-y-5-x-5-y-5-thanh-nhan-tu-faq447273.html

26 tháng 10 2021

\(5,=x^3+2x^2y-7x^2y-14xy^2\\ =x^2\left(x+2y\right)-7xy\left(x+2y\right)\\ =x\left(x-7y\right)\left(x+2y\right)\)

11 tháng 12 2017

x 3  +  y 3  +  z 3  – 3xyz = x + y 3  – 3xy(x + y) +  z 3  – 3xyz

      = [  x + y 3  +  z 3 ] - [ 3xy.(x+ y) + 3xyz]

      = [ x + y 3  +  z 3 ] – 3xy(x + y + z)

      = (x + y + z)[ x + y 2  – (x + y)z +  z 2 ] – 3xy(x + y + z)

      = (x + y + z)( x 2  + 2xy + y 2  – xz – yz + z 2  – 3xy)

      = (x + y + z)( x 2  +  y 2  +  z 2  – xy – xz - yz)

19 tháng 9 2021

\(a,=\left(2x-5\right)\left(x+1\right)\\ b,=\left(x-10\right)\left(x+1\right)\\ c,=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

5 tháng 11 2017

a) Cách 1.

Ta có 2xy + 3z + 6y + xz = (2xy + xz) + (3z + 6y)

= x(2 y + z)+3(z + 2 y) = (z + 2y)(x + 3).

Cách 2.

Ta có 2xy + 3z + 6y + xz = (2x1/ + 6y) + (3z + xz)

= 2y(x + 3) + z(3 + x) = (z + 2y)(x + 3).

b) Biến đổi được a 4   -   9 rt 3   +   a 2 -9a = (a- 9)a( a 2  +1).

c) Biến đổi được 3 x 2  + 5y - 3xy + (-5x) = (x - y)(3x - 5).

d) Biến đổi được  x 2  - (a + b)x + ab = (x- a)(x - b).

e) Ta có 4 x 2 - 4xy + y 2   –   9 t 2 =  ( 2 x   -   y ) 2   -   ( 3 t ) 2

= (2x - y - 3t )(2x - y + 31).

g) Ta có  x 3   -   3 x 2 y   +   3 xy 2   -   y 3   -   z 3

= ( x   -   y ) 3   -   z 3 = (x - y - z)( x 2   +   y 2   +   z 2  - 2xy + xz - yz).

h) Ta có x 2   -   y 2 + 8x + 6y+ 7 = ( x 2  +8x + 16) - ( y 2  - 6y+ 9)

= ( x   +   4 ) 2   - ( y - 3 ) 2  =(x-y + 7)(x + y + l).

1 tháng 9 2023

\(\left(x+y-z\right)^3-x^3-y^3+z^3\)

\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)

\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)

\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)

\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

#\(Urushi\text{☕}\)

1 tháng 9 2023

Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:

(x+y+z)3-x3-y3-z3

=[(x+y)+z]3-x3-y3-z3

=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3

=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)