Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ba đường thẳng cắt nhau tại 1 điểm tạo thành 6 tia chung gốc.
Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
30 : 2 = 15 góc
3 đường thẳng cắt nhau tạo thành 3 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
15 - 3 = 12 góc khác góc bẹt
Có tất cả 12 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
12 : 2 = 6 cặp góc đối đỉnh
b) Tương tự câu a)
Nếu có 3 đường thẳng cắt nhau tại 1 điểm thì chúng tạo thành 6 tia chung gốc.
Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
30 : 2 = 15 góc
3 đường thẳng cắt nhau tạo thành 3 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
15 - 3 = 12 góc khác góc bẹt
Có tất cả 12 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
12 : 2 = 6 cặp góc đối đỉnh
Nguồn: https://h.vn/hoi-dap/question/87465.html
b,https://olm.vn/hoi-dap/question/181733.html
bạn click vô link sẽ dẫn đến bài viết
a) Ba đường thẳng cắt nhau tại 1 điểm tạo thành 6 tia chung gốc.
Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 góc
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
30 : 2 = 15 góc
3 đường thẳng cắt nhau tạo thành 3 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
15 - 3 = 12 góc khác góc bẹt
Có tất cả 12 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
12 : 2 = 6 cặp góc đối đỉnh
b) Tương tự câu a)
Vì n đường thẳng cắt nhau tại 1 điểm nên có :
\(2n\)tia chung gốc .
=> Số góc tạo thành là :
\(2n.\frac{2n-1}{2}=n.\left(2n-1\right)\)
=> Số góc còn lại là :
\(n.\left(2n-1\right)-n=2n.\left(n-1\right)\)
Các góc mà đường thẳng n tạo nên đều là các góc đối đỉnh nên
\(\Rightarrow2n.\frac{n-1}{2}=n.\left(n-1\right)\)
Vậy ...
n đường thẳng cắt nhau tại O tạ thành 2n tia cung gốc
Cứ mỗi tia tạo với 2n-1 tia còn lại 2n-1 góc
=> Có số góc là:
2n(2n-1)
Nếu như vậy mỗi tia sẽ bị tính 2 lần
=> Số tia thực là:
2n(2n-1):2 = n(2n-1)
=> Số góc khác góc bẹt là:
n(2n-1) - n = n(2n-2) = n.2.(n-1) (góc)
=> Số cặp góc đối đỉnh là:
n.2.(n-1) : 2 = n(n-1)
=> n.(n-1) = 12 = 4.3
=> n = 4
=> Có 4 đường thẳng
a) Ba đường thẳng cắt nhau tại 1 điểm tạo thành 6 tia chung gốc.
Mỗi tia tạo với 5 tia còn lại 5 góc mà có 6 tia như vậy nên có tất cả số góc là:
5 x 6 = 30 (góc)
Vì mỗi góc được tính lặp lại 2 lần nên có tất cả:
30 : 2 = 15 (góc)
3 đường thẳng cắt nhau tạo thành 3 góc bẹt. Vậy có tất cả số góc khác góc bẹt là:
15 - 3 = 12 (góc khác góc bẹt)
Có tất cả 12 góc khác góc bẹt mà mỗi góc có 1 góc đối đỉnh với nó. Nên có tất cả:
12 : 2 = 6 (cặp góc đối đỉnh)
b) Tương tự câu a)