Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
a) Để A là phân số thì n + 3 khác 0 => n khác -3 thì A là phân số
b) Để A nguyên thì 2n - 5 chia hết cho n + 3
=> 2n + 6 - 11 chia hết cho n + 3
=> 2.(n + 3) - 11 chia hết cho n + 3
Do 2.(n + 3) chia hết cho n + 3 => 11 chia hết cho n + 3
=> n + 3 thuộc {1 ; -1; 11; -11}
=> n thuộc {-2; -4; 8; -14}
c) Gọi d là ước nguyên tố chung của 2n - 5 và n + 3
=> 2n - 5 chia hết cho d; n + 3 chia hết cho d
=> 2n - 5 chia hết cho d; 2.(n + 3) chia hết cho d
=> 2n - 5 chia hết cho d, 2n + 6 chia hết cho d
=> (2n + 6) - (2n - 5) chia hết cho d
=> 2n + 6 - 2n + 5 chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1 ; 11}
Mà d nguyên tố => d = 11
Với d = 11 thì 2n - 5 chia hết cho 11, n + 3 chia hết cho 11
=> 2n - 5 + 11 chia hết cho 11 => 2n + 6 chia hết cho 11
=> 2.(n + 3) chia hết cho 11
Do (2,11)=1 => n + 3 chia hết cho 11
=> n = 11k + 8 ( k thuộc Z)
Vậy với n = 11k + 8 ( k thuộc Z) thì A rút gọn được
Với n khác 11k + 8 (k thuộc Z) thì A tối giản
Để A là phân số thì \(n+1\ne0\Rightarrow n\ne-1\) và \(n\in Z\)
ta có \(A=\frac{3-n}{n+1}=\frac{4-n+1}{n+1}=\frac{4}{n+1}-1\left(1\right)\)
Từ \(\left(1\right)\Rightarrow n+1\inƯCLN\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Nếu \(n+1=-4\Rightarrow n=-5\)
\(n+1=-2\Rightarrow n=-3\)
\(n+1=-1\Rightarrow n=-2\)
\(n+1=1\Rightarrow n=0\)
\(n+1=2\Rightarrow n=1\)
\(n+1=4\Rightarrow n=3\)
Vậy \(n\in\left\{-5;-3;-2;0;1;3\right\}\) Để A là số nguyên
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11
\(A=\frac{n-8}{n+1}+\frac{n+3}{n+1}=\frac{n-8+n+3}{n+1}=\frac{2n-5}{n+1}\)
Để \(A\)là số nguyên thì \(2n-5⋮n+1\)
\(n+1⋮n+1\Rightarrow2\left(n+1\right)⋮n+1\Rightarrow2n+2⋮n+1\)
\(\Rightarrow2n-5-\left(2n+2\right)⋮n+1\Rightarrow2n-5-2n-2⋮n+1\)\(\Rightarrow-7⋮n+1\)
\(\Rightarrow n+1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow n\in\left\{0;6;-2;-8\right\}\)
Để A có giá trị nguyên => n + 1 chia hết n - 3
=> n - 3 + 4 chia hết n - 3
=> 4 chia hết n - 3
=> ..........................Còn lại tự làm nha!
n+1/n-3 = n-3+4/n-3
=> 1+(4/n-3)
=>n-3 là ước của 4={-4;-2;-1;1;2;4}
giải các giá trị trên ta được n={-1;1;2;4;5;7}