K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a) Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có \(C^4_{50}.C^4_{46}\) cách phân công.

Từ đó ta có đẳng thức cần chứng minh

b) Lập luận tương tự

c) Ta có : \(0!=1;2!=2;4!=1.2.3.4=24\)

Các số hạng \(6!;8!;.....,100!\) đều có tận cùng là chữ số \(0\). Do đó chữ số ở hàng đơn vị của \(S\)\(1+2+4=7\)

22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

7 tháng 11 2018

a) Cách thứ nhất: Chọn 9 bạn nam trong 50 bạn để làm trực nhật. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Khi đã chọnđược 9 bạn rồi, chọn 4 trong 9 bạn đó để quét sân. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Từ đó, theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách phân công.

Cách thứ hai: Chọn 4 trong 50 bạn để quét sân, sau đó chọn 5 trong 46 bạn còn lại để xén cây. Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách phân công.

Từ đó ta có đẳng thức cần chứng minh.

29 tháng 10 2016

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp

25 tháng 4 2016

Điều kiện là n\(\ge\)5, n\(\in\)Z

Ta có

\(\Leftrightarrow\) \(C_{n+1}^5\) = 3\(C_{n+1}^6\) (áp dụng công thức \(C_{n+1}^k\) = \(C_n^k\) + \(C_n^{k-1}\))

\(\Leftrightarrow\) \(\frac{\left(n+1\right)!}{\left(n-4\right)!5!}\) = 3\(\frac{\left(n+1\right)!}{\left(n-5\right)!6!}\)

\(\Leftrightarrow\) \(\frac{1}{\left(n-4\right)!5!}\) = \(\frac{3}{\left(n-5\right)!6!}\)

\(\Leftrightarrow\) \(\frac{1}{n-4}\) = \(\frac{3}{6}\)

\(\Leftrightarrow\) 3n - 12 = 6

\(\Leftrightarrow\) n = 6

Rõ ràng n = 6 thỏa mãn điều kiện n\(\ge\) 5, n \(\in\) Z. Vậy nghiệm duy nhất của chương trình đã cho là n = 6.

14 tháng 9 2016

thanks nha!!

18 tháng 5 2017

Ta có :

\(C^{k+1}_{n+1}=C^k_n+C_n^{k+1}\)

\(C^{k+1}_n=C^k_{n-1}+C_{n-1}^{k+1}\)

...........

\(C^{k+1}_{k+2}=C^k_{k+1}+C_{k+1}^{k+1}\)

Từ đó :

\(C^{k+1}_{n+1}=C^k_n+C_{n-1}^k+....C^k_{k+1}+C^{k+1}_{k+1}\)

= \(C^k_n+C_{n-1}^k+....+C^k_{k+1}+C^k_k\)