K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
8 tháng 11 2017
Ê thông ơi hình như đề là cm ko cp chứ , cậu xem lại đề đi nha
AH
Akai Haruma
Giáo viên
11 tháng 8 2021
Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$
Do đó $A$ không là số chính phương
-----------------------
$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$
$94^{100}\equiv 0\pmod 4$
$1994^{100}\equiv 0\pmod 4$
$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$
Một scp không thể chia 4 dư 2 nên $B$ không là scp
---------------
Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.
TK
0
Câu này chắc chắn có bạn trả lời được thôi. Dùng đồng dư hoặc hàm euler.
câu a: Mình gợi ý chứng minh M chia hết cho 3 nhưng không chia hết cho 9 nên M không là số chính phương.
a, Nguyên lý đirichle cứu với!!!!!!!! | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
b, Ta có: \(20^5\equiv1\left(mod11\right)\)
\(\left(20^5\right)^3\equiv1^3\equiv1\left(mod11\right)\)
Tương ứng với \(20^{15}\) : 11 dư 1
=> 2015 - 1 \(⋮\) 11 (đpcm)
c, Có: \(2^{30}\equiv12\left(mod13\right)\);
\(3^{15}\equiv1\left(mod13\right)\)
\(\left(3^{15}\right)^2\equiv1^2\equiv1\left(mod13\right)\)
<=> \(2^{30}+3^{30}\) \(\equiv12+1\equiv13\left(mod13\right)\)
Vì 13 chia hết cho 13 nên 230 + 330 chia hết cho 13 (đpcm)
d, tượng tự b