K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz

= xy(X + y + z)  + yz(x + y + z) + xz(X + y + z)

= (x + y +z)(xy + yz+ xz)

b) xy(x + y) - yz(y + z) - xz(z - x)

= x2y + xy2 - y2z - yz2 - xz2 + x2z

= x2(y + z) - yz(y + z) + x(y2 - z2)

= x2(y + z) - yz(y + z) + x(y + z)(y - z)

= (y + z)(x2 - yz + xy - xz)

= (y + z)[x(x + y) - z(x + y)]

= (y + z)(x + y)(x - z)

c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)

 = x(y - z)(y + z) + yz2 - yx2 + x2z - y2z

= x(y - z)(y + z) - yz(y - z) - x2(y - z)

= (y - z)((xy + xz - yz - x2)

= (y - z)[x(y - x) - z(y - x)]

= (y - z)(x - z)(y -x) 

12 tháng 1 2020

Phân tích đến đây rồi ạ : 

\(2xy+2yz+2zx=2x^2+2y^2+2z^2\)

Từ cái này suy ra được đpcm hay cần thêm bước nào nữa k ạ ? 

12 tháng 1 2020

\(VT=2x^2+2y^2+2z^2-2xy-2yz-2zx=2\left(x^2+y^2+z^2-xy-yz-zx\right)\)\(VT=VP\Leftrightarrow2\left(x^2+y^2+z^2-2xy-2yz-2zx\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx=0\)

\(\Leftrightarrow x^2+y^2+z^2=xy+yz+zx\)

Mà \(x^2+y^2+z^2\ge xy+yz+zx\)(tự c/m)

(Dấu "="\(\Leftrightarrow x=y=z\))

=> đpcm

21 tháng 11 2017

d)

\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)

=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)

=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)

22 tháng 11 2017

Cảm ơn, mình làm được rồi :>

2 tháng 8 2019

Đẳng thức ban đầu \(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=4x^2+4y^2+4z^2-4xy-4yz-4zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Leftrightarrow x=y=z\)

5 tháng 7 2019

Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)

=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)

\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)

\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

Như vậy:

 \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)

<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)

Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)

 \(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)

\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)

17 tháng 7 2020

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}=\frac{x^2+xy}{\left(x+y\right)\left(x+z\right)}-\frac{xy+yz}{\left(x+y\right)\left(x+z\right)}=\frac{x}{x+z}-\frac{y}{x+y}\)

Tương tự:\(\frac{y^2-zx}{\left(y+z\right)\left(y+x\right)}=\frac{y}{x+y}-\frac{z}{y+z};\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}=\frac{z}{z+y}-\frac{x}{z+x}\)

Khi đó:

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-zx}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}=0\)