\(\left(x+3\right)^4+\left(x+5\right)^4=16\)

b) \(\left(x+4...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

a/ Đặt a = x + 4

=> (a - 1)4 + (a + 1)4 = 16

=> a4 - 4a3 + 6a2 - 4a + 1 + a4 + 4a3 + 6a2 + 4a + 1 = 16

=> 2a4 + 12a2 - 14 = 0

 

Đặt t = a2 ( t\(\ge\) 0)

=> 2t2 + 12t - 14 = 0

=> (t - 1)(t + 7) = 0

=> t - 1 = 0 => t = 1

hoặc t + 7 = 0 => t = -7 (loại)

Với t = 1 => a2 = 1 => a = 1 hoặc a = -1

+) Khi a = 1 => x + 4 = 1 => x = -3

+) Khi a = -1 => x + 4 = -1 => x = -5

Vậy x = -3 , x = -5

21 tháng 1 2018

câu b sai rồi bạn

\(x^8+4=\left(x^4+2\right)^2-4x^4\) mới đúng

10 tháng 2 2019

a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)

\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)

=>x=1/2 hoặc x=-1 hoặc x=2

Vậy pt có tập nghiệm là S={1/2;-1;2}

b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)

\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)

\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)

\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)

\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)

Vậy...

c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)

Đặt x-6=t => x-8=t-2

Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)

\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)

\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)

\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)

Mà t^2-2t+8=(t-1)^2+7 > 0

\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)

Vậy...

8 tháng 11 2016

a)(x+1)(x+2)(x+3)(x+4)+1

=(x+1)(x+4)(x+2)(x+3)+1

=(x2+5x+4)(x2+5x+6)+1

Đặt a=(x2+5x+4) thì (x2+5x+4)(x2+5x+6)+1

= a.(a+2)+1

=a2+2a+1

=(a+1)2

Thay: =(x2+5x+4+1)2

=(x2+5x+5)2

b)(x+2)(x+4)(x+6)(x+8)+16

=(x+2)(x+8)(x+4)(x+6)+16

=(x2+10x+16)(x2+10x+24)+16

Đặt a=(x2+10x+16) thì (x2+10x+16)(x+5x+24)+1

= a.(a+8)+16

=a2+8x+16

=(a+4)2

Thay: =(x2+10x+16+4)2

=(x2+5x+20)2

2 tháng 7 2019

a)(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

Đặt a=(x2+5x+4)

Ta có: (x2+5x+4)(x2+5x+6)+1

= a.(a+2)+1

=a2+2a+1

=(a+1)2

=(x2+5x+4+1)2

=(x2+5x+5)2

b)(x+2)(x+4)(x+6)(x+8)+16

=(x+2)(x+8)(x+4)(x+6)+16

=(x2+10x+16)(x2+10x+24)+16

Đặt a=(x2+10x+16)

Ta có:(x2+10x+16)(x+5x+24)+1

= a.(a+8)+16

=a2+8x+16

=(a+4)2

=(x2+10x+16+4)2

=(x2+5x+20)2

Mk yêu bé Shin-Conan lémyeuyeu

10 tháng 2 2019

a) (x+3)4+(x+5)4=16

<=>(x+3)4+(x+5)4=04+24

TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)

TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)

b)(x-2)4+(x-3)4=1=04+14

TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại

TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.

c)(x+1)4+(x-3)4=82=34+(-1)4

làm tương tự => x=2.

d) làm tương tự câu b

18 tháng 6 2017

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a

13 tháng 2 2019

Bài 17)

(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5

13 tháng 2 2019

Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

a)

\((x+2)(x+4)(x+6)(x+8)+16\)

\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)

\(=(x^2+10x+16)(x^2+10x+24)+16\)

\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )

\(=a^2+2.4.a+4^2=(a+4)^2\)

\(=(x^2+10x+16+4)^2\)

\(=(x^2+10x+20)^2\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2018

b) \((x^2+x)(x^2+x+1)-6\)

\(=(x^2+x)^2+(x^2+x)-6\)

\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)

\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)

\(=(x^2+x-2)(x^2+x+3)\)

\(=(x^2-x+2x-2)(x^2+x+3)\)

\(=[x(x-1)+2(x-1)](x^2+x+3)\)

\(=(x-1)(x+2)(x^2+x+3)\)

c)

\((x^2-4x)^2-8(x^2-4x)+15\)

\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)

\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)

\(=(x^2-4x-3)(x^2-4x-5)\)

\(=(x^2-4x-3)(x^2+x-5x-5)\)

\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)