Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Leftrightarrow\left(x+1+x-2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-2\right)+\left(x-2\right)^2\right]-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x+1-x^2+x+2+x^2-4x+4\right)-\left(2x-1\right)^3=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-\left(2x-1\right)^2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+7-4x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-3x^2+3x+6\right)=0\)
\(\Leftrightarrow-3\left(2x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)\left(x-2\right)=0\)
=>x=1/2 hoặc x=-1 hoặc x=2
Vậy pt có tập nghiệm là S={1/2;-1;2}
b, \(x^4=24x+32\Leftrightarrow x^4-24x-32=0\)
\(\Leftrightarrow x^4-2x^3-4x^2+2x^3-4x^2-8x+8x^2-16x-32=0\)
\(\Leftrightarrow x^2\left(x^2-2x-4\right)+2x\left(x^2-2x-4\right)+8\left(x^2-2x-4\right)=0\)
\(\Leftrightarrow\left(x^2-2x-4\right)\left(x^2+2x+8\right)=0\)
\(\Leftrightarrow x^2-2x-4=0\) (vì x^2+2x+8 > 0)
\(\Leftrightarrow\left(x-1\right)^2-5=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x-1=\pm\sqrt{5}\Leftrightarrow x=1\pm\sqrt{5}\)
Vậy...
c, \(\left(x-6\right)^4+\left(x-8\right)^4=16\)
Đặt x-6=t => x-8=t-2
Ta có: \(t^4+\left(t-2\right)^4=16\Leftrightarrow t^4+t^4-8t^3+24t^2-32t+16=16\)
\(\Leftrightarrow2t^4-8t^3+24t^2-32t=0\Leftrightarrow t^4-4t^3+12t^2-16t=0\)
\(\Leftrightarrow t^4-2t^3-2t^3+4t^2+8t^2-16t=0\)
\(\Leftrightarrow t^3\left(t-2\right)-2t^2\left(t-2\right)+8t\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t^3-2t^2+8t\right)=0\Leftrightarrow\left(t-2\right)t\left(t^2-2t+8\right)=0\)
Mà t^2-2t+8=(t-1)^2+7 > 0
\(\Rightarrow\orbr{\begin{cases}t-2=0\\t=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-6-2=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=8\\x=6\end{cases}}}\)
Vậy...
a)(x+1)(x+2)(x+3)(x+4)+1
=(x+1)(x+4)(x+2)(x+3)+1
=(x2+5x+4)(x2+5x+6)+1
Đặt a=(x2+5x+4) thì (x2+5x+4)(x2+5x+6)+1
= a.(a+2)+1
=a2+2a+1
=(a+1)2
Thay: =(x2+5x+4+1)2
=(x2+5x+5)2
b)(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
Đặt a=(x2+10x+16) thì (x2+10x+16)(x+5x+24)+1
= a.(a+8)+16
=a2+8x+16
=(a+4)2
Thay: =(x2+10x+16+4)2
=(x2+5x+20)2
a)(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
Đặt a=(x2+5x+4)
Ta có: (x2+5x+4)(x2+5x+6)+1
= a.(a+2)+1
=a2+2a+1
=(a+1)2
=(x2+5x+4+1)2
=(x2+5x+5)2
b)(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
Đặt a=(x2+10x+16)
Ta có:(x2+10x+16)(x+5x+24)+1
= a.(a+8)+16
=a2+8x+16
=(a+4)2
=(x2+10x+16+4)2
=(x2+5x+20)2
Mk yêu bé Shin-Conan lém
a) (x+3)4+(x+5)4=16
<=>(x+3)4+(x+5)4=04+24
TH1: \(\left\{{}\begin{matrix}x+3=0\\x+5=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=-3\end{matrix}\right.\Leftrightarrow x=-3\)
TH2:\(\left\{{}\begin{matrix}x+3=2\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)(loại)
b)(x-2)4+(x-3)4=1=04+14
TH1: \(\left\{{}\begin{matrix}x-2=0\\x-3=1\end{matrix}\right.\)loại
TH2: \(\left\{{}\begin{matrix}x-2=1\\x-3=0\end{matrix}\right.\)=>x=3.
c)(x+1)4+(x-3)4=82=34+(-1)4
làm tương tự => x=2.
d) làm tương tự câu b
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
Bài 17)
(x - 2)^4 + (x - 6)^4 = 82
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
Bài 18: Phương trình đã cho được viết thành: $${({x^2} + 6x + 10)^2} + (x + 3)\left[ {3\left( {{x^2} + 6x + 10} \right) + 2\left( {x + 3} \right)} \right] = 0$$
Đặt $u = {x^2} + 6x + 10 > 0,v = x + 3$, suy ra:
$${u^2} + v\left( {3u + 2v} \right) = 0 \Leftrightarrow \left( {u + v} \right)\left( {u + 2v} \right) = 0 \Leftrightarrow \left[ \begin{gathered}
u + v = 0 \\
u + 2v = 0 \\
\end{gathered} \right.$$
$$ \Leftrightarrow \left[ \begin{gathered}
{x^2} + 6x + 10 + x + 3 = 0 \\
{x^2} + 6x + 10 + 2\left( {x + 3} \right) = 0 \\
\end{gathered} \right. \Leftrightarrow \left[ \begin{gathered}
{x^2} + 7x + 13 = 0 \\
{x^2} + 8x + 16 = 0 \\
\end{gathered} \right. \Leftrightarrow x = - 4$$
a)
\((x+2)(x+4)(x+6)(x+8)+16\)
\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)
\(=(x^2+10x+16)(x^2+10x+24)+16\)
\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )
\(=a^2+2.4.a+4^2=(a+4)^2\)
\(=(x^2+10x+16+4)^2\)
\(=(x^2+10x+20)^2\)
b) \((x^2+x)(x^2+x+1)-6\)
\(=(x^2+x)^2+(x^2+x)-6\)
\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)
\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)
\(=(x^2+x-2)(x^2+x+3)\)
\(=(x^2-x+2x-2)(x^2+x+3)\)
\(=[x(x-1)+2(x-1)](x^2+x+3)\)
\(=(x-1)(x+2)(x^2+x+3)\)
c)
\((x^2-4x)^2-8(x^2-4x)+15\)
\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)
\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)
\(=(x^2-4x-3)(x^2-4x-5)\)
\(=(x^2-4x-3)(x^2+x-5x-5)\)
\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)
a/ Đặt a = x + 4
=> (a - 1)4 + (a + 1)4 = 16
=> a4 - 4a3 + 6a2 - 4a + 1 + a4 + 4a3 + 6a2 + 4a + 1 = 16
=> 2a4 + 12a2 - 14 = 0
Đặt t = a2 ( t\(\ge\) 0)
=> 2t2 + 12t - 14 = 0
=> (t - 1)(t + 7) = 0
=> t - 1 = 0 => t = 1
hoặc t + 7 = 0 => t = -7 (loại)
Với t = 1 => a2 = 1 => a = 1 hoặc a = -1
+) Khi a = 1 => x + 4 = 1 => x = -3
+) Khi a = -1 => x + 4 = -1 => x = -5
Vậy x = -3 , x = -5