K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(a,\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\sqrt{2.3}+2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)

\(=3-2\)

\(=1\)

\(b,\sqrt{11+2\sqrt{6}}-3+\sqrt{2}\)

==>Đề sai???

27 tháng 7 2023

Xem lại câu c) và d) 

b: =căn 10-3+4-căn 10=1

a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)

 

21 tháng 7 2017

\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

 =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)

\(\Rightarrow A=\sqrt{2}\)

a: Ta có: \(A=\left(\dfrac{6+\sqrt{20}}{3+\sqrt{5}}+\dfrac{\sqrt{14}-\sqrt{2}}{\sqrt{7}-1}\right):\left(2+\sqrt{2}\right)\)

\(=\left(2+\sqrt{2}\right):\left(2+\sqrt{2}\right)\)

=1

b: Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-\dfrac{11}{2\sqrt{3}+1}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+1\)

=1

11 tháng 10 2021

\(a,=\sqrt{17}-5\sqrt{2}+3\\ b,=\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\sqrt{6-2\sqrt{5}}\\ =\left(3+\sqrt{5}\right)\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\\ =\left(3+\sqrt{5}\right)\left(6-2\sqrt{5}\right)=8\\ c,=\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)=2-9=-7\\ d,4+\sqrt{7}-\sqrt{2}\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

1 tháng 10 2023

\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)

\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)

\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)

\(A=2^2-\left(\sqrt{5}\right)^2\)

\(A=4-5\)

\(A=-1\)

____

\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)

\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(B=6-121\)

\(B=-115\)

2 tháng 7 2019

\(a,\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{3+2\sqrt{2.3}+2}-\sqrt{3-2\sqrt{2.3}+2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{2}\)

\(b,\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{5-2\sqrt{2.5}+2}-\sqrt{5+2\sqrt{5.2}+2}\)

\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

\(=-2\sqrt{2}\)

2 tháng 7 2019

a) \(\sqrt{5+2\sqrt{6}}\) -\(\sqrt{5-2\sqrt{6}}\) 

=\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

=/\(\sqrt{3}+\sqrt{2}\)/  \(-\)/\(\sqrt{3}-\sqrt{2}\) /

=\(\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\) 

=\(\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) 

=\(2\sqrt{2}\) 

b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\) 

=\(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\) 

=/\(\sqrt{5}-\sqrt{2}\) / \(-\) /\(\sqrt{5}+\sqrt{2}\)/

=\(\sqrt{5}-\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)\) 

=\(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) 

=\(-2\sqrt{2}\)

30 tháng 9 2021

a)
\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{2}+1=\sqrt{3}+1\)
b)
\(\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{16}+\sqrt{2}\right)^2}=\sqrt{9}+\sqrt{2}-\sqrt{16}-\sqrt{2}=3-4=-1\)
c)
\(=\sqrt{2\left(2-\sqrt{3}\right)}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)