\(\left[\frac{1}{2^2}-1\right].\left[\frac{1}{3^2}-1\right].\left[\frac{1}{4^2}-1\right].......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

     \(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\)

\(=\frac{\left(1.2.3...99\right)\left(2.3.4...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)

\(=\frac{101}{100}\)

3 tháng 4 2018

mình lam hơi sai mà cũng khá lac đề, bạn từ bài của mình mà làm bài khác đúng hơn nha hiền

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

3 tháng 5 2017

Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)

\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

Vậy \(A< -\frac{1}{2}\)

29 tháng 5 2017

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)

\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)

\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)

\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)

\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)

\(=\frac{101}{2\cdot100}\)

\(=\frac{101}{200}>\frac{1}{2}\)

NM
7 tháng 5 2021

A = \(\left(1-\frac{1}{2^2}\right)\)x  \(\left(1-\frac{1}{3^2}\right)\)x  \(\left(1-\frac{1}{4^2}\right)\)x . . . x \(\left(1-\frac{1}{100^2}\right)\)

A=\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}=\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(100-1\right)\left(100+1\right)}{100^2}\)

A=\(\frac{1.3.2.4.3.5....98.100.99.101}{2^2.3^2....100^2}=\frac{101}{2.100}>\frac{1}{2}\)

7 tháng 5 2021

cảm ơn :]

26 tháng 4 2019

\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)

\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)

\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)

\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)

\(A=\frac{-101}{200}>\frac{-1}{2}\)

2 tháng 3 2020

Thằng điên, có cái đầu bài cx chép sai thì làm ăn đếch j

8 tháng 6 2017

\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{2013^2-1}{2013^2}.\frac{2014^2-1}{2014^2}\)

\(A=\frac{1.3.2.4.3.5....2012.2014.2013.2015}{2^2.3^2.4^2...2013^2.2014^2}\)

\(A=\frac{\left(1.2.3...2012.2013\right).\left(3.4.5...2014.2015\right)}{\left(2.3.4...2013.2014\right).\left(2.3.4...2013.2014\right)}\)(nhóm từng số ở trước và sau vào 2 nhóm khác nhau)

\(A=\frac{3.2015}{2014.2}\)

\(A=\frac{6045}{4028}\)

8 tháng 6 2017

\(A=\frac{6045}{4028}\),nha bạn ,chúc bạn hok tốt ,love bạn nhìu ,cách làm giống như Monozono Nanami nha

15 tháng 7 2016

                    Ta có :

                      \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

                   \(A=\left(\frac{1}{2^2}-\frac{2^2}{2^2}\right).\left(\frac{1}{3^2}-\frac{3^2}{3^2}\right).\left(\frac{1}{4^2}-\frac{4^2}{4^2}\right)...\left(\frac{1}{100^2}-\frac{100^2}{100^2}\right)\)

                   \(A=\left(-\frac{3}{2^2}\right).\left(-\frac{8}{3^2}\right).\left(-\frac{15}{4^2}\right)...\left(-\frac{99}{100^2}\right)\)

                  \(A=-\left(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\right)\)

                  \(A=-\left(\frac{1.2.3....9}{2.3.4....10}.\frac{3.4.5.....11}{2.3.4....10}\right)\)

                  \(A=-\left(\frac{1}{10}.\frac{11}{2}\right)=-\frac{11}{20}=\frac{-11}{20}\)

             Lại có  :            \(\frac{-1}{2}=\frac{-1.10}{2.10}=\frac{-10}{20}\)

               Vì \(-11< -10\)nên \(\frac{-11}{20}< \frac{-10}{20}\)hay \(A< \frac{-1}{2}\)

                Mk mới học bài này xong,nhớ ủng hộ mk nha !!! ^_^

              

                   

12 tháng 5 2019

câu hỏi của Lê Vũ Anh Thư nhé, vừa đc đăng lên

chúc hok tốt!

13 tháng 5 2019

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(\Rightarrow A=\left(\frac{1}{2^2}-\frac{4}{2^2}\right)\left(\frac{1}{3^2}-\frac{9}{3^2}\right)...\left(\frac{1}{100^2}-\frac{10000}{100^2}\right)\)

\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}...\frac{-9999}{100^2}\)

\(\Rightarrow A=-\frac{3}{2^2}.\frac{8}{3^2}...\frac{9999}{100^2}\)

\(\Rightarrow A=-\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)

\(\Rightarrow A=-\frac{\left(1.2...99\right)\left(3.4...101\right)}{\left(2.3...100\right)\left(2.3...100\right)}\)

\(\Rightarrow A=-\frac{101}{100.2}=\frac{-101}{200}< \frac{-100}{200}=\frac{-1}{2}\)

Vậy \(A< \frac{-1}{2}\)

8 tháng 6 2018

Ta có :

\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)

\(A< \left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{100}-1\right)\)

           \(\Rightarrow A< \left(\frac{-1}{2}\right).\left(\frac{-2}{3}\right)....\left(\frac{-99}{100}\right)\)

\(\Rightarrow A< -\left(\frac{1}{2}.\frac{2}{3}...\frac{99}{100}\right)\)

\(A< -\left(\frac{1.2....99}{2.3...100}\right)=\frac{-1}{100}\)

\(\)Mà \(\frac{-1}{100}>\frac{-1}{2}\)

\(\Rightarrow A>\frac{-1}{2}\)

8 tháng 6 2018

https://olm.vn/hoi-dap/question/688910.html

Tham khảo ở link này nha bạn.