Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =\(\left[\left(12+1\right)^2+\left(12+2\right)^2\right]:\left(13^2+14^2\right)\)
=1
b)=(1.2.3....8).(9-1-8)
=(1.2.3....8).0
=0
mik chỉ giải được zậy thôi.
t mik nha.
\(1.2.3...9-1.2.3...8-1.2.3...7.8^2\)
\(=\left(1.2.3...8\right).\left(9-1.8\right)\)
\(=\left(1.2.3...8\right).0\)
=0
d,\(1152-\left(374+1152\right)+\left(-65+374\right)\)
=1152-374-1152+(-65)+374
=(-1152+1152)+(-374+374)+(-65)
=0+0+(-65)
=0
\(b,1.2.3...9-1.2.3...8-1.2.3...7.8^2\)
\(=(1.2.3...8).(9-1-8)\)
\(=(1.2.3...8).0\)
\(=0\)
a, 1 + 3 − 5 − 7 + 9 + 11 − ... − 397 − 399
= (1 + 3 - 5 - 7) + (9 + 11 - 13 - 15) + ... + (393 + 395 - 397 - 399)
= (-8) + (-8) + ... + (-8)
= (-8) . 50 (vì có 50 lần số hạng -8)
= - 400
_Vậy 1 + 3 − 5 − 7 + 9 + 11 − ... − 397 − 399 = -400
Câu 1 dễ mà :
1.2.3...9 - 1.2.3...8 - 1.2.3...7.82
= 1.2.3...8.9 - 1.2.3...8.1 - 1.2.3...7.8.8
= 1.2.3...8.( 9 - 1 - 8 )
= 1.2.3...8.0
= 0
a)\(\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)
\(=\left(100+121+144\right)\div\left(169+196\right)\)
\(=365\div365\)
\(=1\)
b) \(1.2.3...9-1.2.3...8-1.2.3...8^2\)
\(=1.2.3...8\left(9-1-8\right)\)
\(=1.2.3...8.0\)
\(=0\)
d) \(1152-\left(374+1152\right)+\left(-65+374\right)\)
\(=1152-374-1152-65+374\)
\(=\left(1152-1152\right)-65+\left(374-374\right)\)
\(=0-65+0\)
\(=-65\)
e) \(13-12+11+10-9+8-7-6+5-4+3+2-1\)
\(=13-\left(12-11\right)+\left(10-9\right)+\left(8-7\right)-\left(6-5\right)-\left(4-3\right)\)\(+\left(2-1\right)\)
\(=13-1+1+1-1-1+1\)
\(=13+0+0+0\)
\(=13\)
a) Đặt \(A=\left(10^2+11^2+12^2\right)\div\left(13^2+14^2\right)\)
- Ta có: \(A=\left(100+121+144\right)\div\left(169+196\right)\)
\(\Leftrightarrow A=365\div365=1\)
Vậy \(A=1\)
b) Đặt \(B=1.2.3.....9-1.2.3.....8-1.2.3.....8^2\)
- Ta có: \(B=1.2.3.....8.\left(9-1\right)-1.2.3.....8^2\)
\(\Leftrightarrow B=1.2.3.....8.8-1.2.3.....8.8=0\)
Vậy \(B=0\)
c) Đặt \(C=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
- Ta có: \(C=\frac{3^2.4^2.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^4.2^{32}}{11.2^{35}-2^{36}}\)
\(\Leftrightarrow C=\frac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(\Leftrightarrow C=\frac{9.2^{36}}{2^{35}.9}\)
\(\Leftrightarrow C=2\)
Vậy \(C=2\)
d) Đặt \(D=1152-\left(374+1152\right)+\left(-65+374\right)\)
- Ta có: \(D=1152-374-1152-65+374\)
\(\Leftrightarrow D=\left(1152-1152\right)+\left(374-374\right)-65\)
\(\Leftrightarrow D=-65\)
Vậy \(D=-65\)