Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)
Kẻ đường cao BK
Xét hai tam giác vuông AHD và BKC, ta có:
∠ (AHD) = ∠ (BKC) = 90 0
AD = BC (tỉnh chất hình thang-Cân)
∠ D = ∠ C (gt)
Do đó: ∆ AHD = ∆ BKC (cạnh huyền, góc nhọn) ⇒ HD = KC.
Hình thang ABKH có hai cạnh bên song song nên AB = HK
a – b = DC – AB = DC – HK = HD + KC = 2HD ⇒ HD = (a – b) / 2
HC = DC – HD = a - (a – b) / 2 = (a + b) / 2
Kẻ đường cao BK và đường cao AH .
Xét tam giác ADC và tam giác BKC có :
\(AD=BC\left(gt\right)\)
\(\widehat{D}=\widehat{C}\)( vì ABCD là hình thang cân )
=> tam giác vuông ADC = tam giác vuông BKC ( cạnh huyền - góc nhọn )
\(\Rightarrow HD=KC=\frac{CD-HK}{2}=\frac{CD-AB}{2}=\frac{a-b}{2}\)
Xét tam giác AHD vuông tại H có :( Py-ta-go )
\(AD^2=AH^2+HD^2\)
\(=\left(\frac{a+b}{2}\right)^2+\left(\frac{a-b}{2}\right)^2\)
\(=\frac{2a^2+2b^2}{4}=\frac{a^2+b^2}{2}\)
Vậy \(AD=\sqrt{\frac{a^2+b^2}{2}}\)
+) Hình thang ABCD cân => góc ADC = ACD ; AD = BC
Kẻ BK vuông góc với CD
Tam giác vuông ADH và tam giác vuông BCK có: AD = BC; góc ADC = ACD => tam giác ADH = BCK ( cạnh huyền - góc nhọn)
=> DH = CK
+) Tứ giác ABKH có: AB// HK; AH// BK => ABKH là hình bình hành => AB = HK = b
=> DH + KC = CD - HK = a - b
=> 2.DH = a - b => HD = (a - b)/2
+) HC = HK + KC = b + (a - b)/2 = (a + b)/ 2
Vậy...
b) Cho a = 26; b = 10; AD= 17
Áp dụng công thức trên có HD = (26 - 10)/2 = 8 cm
Áp dụng ĐL Pi ta go trong tam giác vuông ADH có: AH2 = AD2 - HD2 = 172 - 82 = 225 => AH = 15 cm
Vậy...