K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

J
15 tháng 4 2019

a) \(\left(2x^2+3x-6\right)^2-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\) \(\left(2x^2+3x-6-3x+2\right)\left(2x^2+3x-6+3x-2\right)=0\)

\(\Leftrightarrow\) \(\left(2x^2-4\right)\left(2x^2+6x-8\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x^2-4=0\\2x^2+6x-8=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}2\left(x^2-2\right)=0\\2\left(x^2+3x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2+3x-4=0\left(2\right)\end{matrix}\right.\)

(1) \(x^2=2\) \(\Leftrightarrow x=\pm\sqrt{2}\)

(2) Vì \(a+b+c=1+3-4=0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(x_1=1\) ; \(x_2=\frac{c}{a}=-4\)

Vậy \(S=\left\{\pm\sqrt{2};1;-4\right\}\)

b) \(x^2-9x+20=0\)

\(\Delta=\left(-9\right)^2-4\times20=81-80=1\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt \(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)+\sqrt{1}}{2}=5\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(-9\right)-\sqrt{1}}{2}=4\)

Theo đề bài ta có hệ phương trình sau :

\(\left\{{}\begin{matrix}a+b=5\\ab=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\5b-b^2=4\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}a=5-b\\b^2-5b+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=5-1=4\\a=5-4=1\end{matrix}\right.\\\left[{}\begin{matrix}b=4\\b=1\end{matrix}\right.\end{matrix}\right.\) Vậy (a;b)=(4;1);(1;4)

13 tháng 3 2021

Ta có \(x^2+9x+20=0\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\end{matrix}\right.\).

Xét 2 TH:

+) a + b = -4; ab = -5: Theo định lý Viet đảo ta có a, b là hai nghiệm của pt \(t^2+4t-5=0\Leftrightarrow\left(t-1\right)\left(t+5\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-5\end{matrix}\right.\)

+) a + b = -5; ab = -4: Bạn giải tương tự.

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

12 tháng 3 2021

\(a,3x^2+5x+1=0\\ a=3;b=5;c=1\\ \Delta=b^2-4ac=5^2-4.3.1=13>0\)

=> Phương trình có 2 nghiệm phân biệt

\(b,\dfrac{1}{2}x^2+3x-5=0\\ a=\dfrac{1}{2};b=3;c=-5\\ \Delta=b^2-4ac=4^2-4.\dfrac{1}{2}.\left(-5\right)=26>0\)

=> Phương trình có 2 nghiệm phân biệt

12 tháng 3 2021

a,3x2+5x+1=0a=3;b=5;c=1Δ=b2−4ac=52−4.3.1=13>0a,3x2+5x+1=0a=3;b=5;c=1Δ=b2−4ac=52−4.3.1=13>0

=> Phương trình có 2 nghiệm phân biệt

b,12x2+3x−5=0a=12;b=3;c=−5Δ=b2−4ac=42−4.12.(−5)=26>0b,12x2+3x−5=0a=12;b=3;c=−5Δ=b2−4ac=42−4.12.(−5)=26>0

=> Phương trình có 2 nghiệm phân biệthehe

29 tháng 3 2018

a) Ta có:Δ =(-7)2 -4.2.2 =49 -16 =33 >0

Phương trình có 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =7/2 ;x1x2 =c/a =2/2 =1

b) c = -16 suy ra ac < 0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 =-b/a =-2/5 ;x1x2 =c/a =-16/5

c) Ta có: Δ’ = 22 – (2 -√3 )(2 + √2 ) =4 -4 - 2√2 +2√3 +√6

= 2√3 - 2√2 +√6 >0

Phương trình 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

d) Ta có : Δ = (-3)2 -4.1,4.1,2 =9 – 6,72 =2,28 >0

Phương trình có 2 ghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

x1 + x2 = -b/a = 3/(1.4) = 30/14 = 15/7 ; x1x2 = c/a = (1.2)/(1.4) = 12/14 = 6/7

Ta có: Δ = 12 -4.5.2 = 1 - 40 = -39 < 0

8 tháng 1 2017

a) với m=5

 Phân tích kiểu pháp

đăt x^2+6x+11=t

[t-3(x+3)][(t+3(x+3)]

[t^2-9(x+3)^2]-4

(t^2-4)-9(x+3)^2

(t-2)(t+2)-9(x+3)^2

(t+2)(x+3)^2-9(x+3)^2

(x+3)^2(t-7)=0

\(\orbr{\begin{cases}x+3=0\Rightarrow x=-3\\t-7=0\Rightarrow x^2+6x+4=0\end{cases}}\)

\(\left(x+3\right)^2=5\Rightarrow\orbr{\begin{cases}x=-3+\sqrt{5}\\x=-3-\sqrt{5}\end{cases}}\)

8 tháng 1 2017

b/ \(\left(x^2+3x+2\right)\left(x^2+9x+20\right)-m+1=0\)

 \(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m+1=0\)

 \(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m+1=0\)

Đặt: x+ 6x + 5 = a

Từ đây ta có đề trở thành.

Tìm các giá trị m để pt

a(a + 3) - m + 1 = 0

<=> a2 + 3a - m + 1 = 0 (1)

Có nghiệm thõa 

a + 2 \(\le\)0 <=> a \(\le\)- 2

Dùng ∆ nhé. Bạn làm tiếp nhé.

Điều kiện để  pt (1) có nghiệm thỏa cái đó mình nghĩ bạn làm được :)