Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)
\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)
\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)
\(\ge\text{}\Sigma\text{}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)
\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=2+ab+bc+ca\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(A=\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
\(=\sqrt{100}-1=9\)
\(B=\frac{2}{2}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{35}}\)
\(B>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{35}+\sqrt{36}}\)
\(B>2\left(\frac{\sqrt{2}-1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}+...+\frac{\sqrt{36}-\sqrt{35}}{\left(\sqrt{36}-\sqrt{35}\right)\left(\sqrt{36}+\sqrt{35}\right)}\right)\)
\(B>2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{36}-\sqrt{35}\right)\)
\(B>2\left(\sqrt{36}-1\right)=10>9=A\)
\(\Rightarrow B>A\)
Để biểu thức B có nghĩa thì \(xy\ne0\)
Khi đó ta có:
\(x^3+y^3=2x^2y^2\)
\(\Leftrightarrow\left(x^3+y^3\right)^2=4x^4y^4\)
\(\Leftrightarrow x^6+y^6+2x^3y^3=4x^4y^4\)
\(\Leftrightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)
\(\Leftrightarrow\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
\(\Leftrightarrow1-\frac{1}{xy}=\left(\frac{x^3-y^3}{2x^2y^2}\right)^2\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\left|\frac{x^3-y^3}{2x^2y^2}\right|\) là một số hữu tỉ