Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{2-x}{3}< \dfrac{3-2x}{5}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)\)
\(\Leftrightarrow10-5x< 9-6x\)
\(\Leftrightarrow x< -1\)
Bpt có tập nghiệm: \(S=\left\{x|x>-1\right\}\)
Biểu diễn tập nghiệm trên trục số:
-1 0
b/ 8x + 3(x+1) > 5x - (2x - 6)
<=> 8x + 3x + 3 > 5x - 2x + 6
<=> 8x + 3x - 5x + 2x > 6 - 3
<=> 8x > 3 <=> x > \(\dfrac{8}{3}\)
Vậy bpt có tập nghiệm là: \(S=\left\{x|x>\dfrac{8}{3}\right\}\)
Biểu diễn........(tự biểu diễn nhé quá dễ r)
c/ \(\left|x-7\right|=-2x+3\) (*)
+) Nếu \(x-7\ge0\Leftrightarrow x\ge7\) thì
|x - 7| = x - 7
(*) => x - 7 = -2x + 3
<=> x + 2x = 3 + 7
<=> 3x = 10 <=> x = \(\dfrac{10}{3}\)(loại)
+) Nếu x - 7 < 0 <=> x < 7
thì |x - 7| = 2x - 3
(*) => x - 7 = 2x - 3
<=> x - 2x = -3 + 7
<=> -x = 4 <=> x = -4 (nhận)
Vậy pt có 1 nghiệm x = -4
a: \(\Leftrightarrow-12x-4=8x-2-8-6x\)
=>-12x-4=2x-10
=>-14x=-6
hay x=3/7
b: \(\Leftrightarrow3\left(5x-3\right)-2\left(5x-1\right)=-4\)
=>15x-9-10x+2=-4
=>5x-7=-4
=>5x=3
hay x=3/5(loại)
c: \(\Leftrightarrow x^2-4+3x+3=3+x^2-x-2\)
\(\Leftrightarrow x^2+3x-1=x^2-x+1\)
=>4x=2
hay x=1/2(nhận)
a) \(x^2\) - x( x - 3) > 2x + 5
<=> \(x^2\) - \(x^2\) + 3x > 2x +5
<=> x > 5
Vậy bất phương trình có nghiệm x > 5.
Biểu diễn:
0 5
b) \(\dfrac{x\left(2x-1\right)}{12}\) - \(\dfrac{x}{8}\)< \(\dfrac{x^2-1}{6}\) - \(\dfrac{x+4}{24}\)
<=> \(\dfrac{4x^2-2x-3x}{24}\)<\(\dfrac{4x^2-4-x-4}{24}\)
<=> \(4x^2\) - 2x - 3x < \(4x^2\) - 4 - x -4
<=> -4x< -8
<=> x>2
Vậy bất phương trình có nghiệm x>2.
Biểu diễn:
0 2
Mấy này bạn quy đồng lên cùng mẫu xong khử mẫu rồi giải. Dễ mà.
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
a: =>-12x>12
hay x<-1
b: =>7(3x-1)-252>=21x+3(6x+1)
=>21x-7-252>=21x+18x+3
=>18x+3<=-259
=>18x<=-262
hay x<=-131/9
c: =>3(3x+5)-24x<=48+4(x+8)
=>9x+15-24x<=48+4x+32=4x+80
=>-15x+24<=4x+80
=>-19x<=56
hay x>=-56/19
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a:=>3x=15
=>x=5
b: =>8-11x<52
=>-11x<44
=>x>-4
c: \(VT=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}+\dfrac{x}{6-x}\)
\(=\dfrac{12x-36}{2x-6}\cdot\dfrac{1}{x-6}-\dfrac{x}{x-6}=\dfrac{6}{x-6}-\dfrac{x}{x-6}=-1\)